JOC

Stereoselective Total Synthesis of (\pm) -Pleurospiroketals A and B

Sagar S. Thorat, Gamidi Rama Krishna, and Ravindar Kontham*

Figure 1. Structures of Pleurospiroketals A-E (1-5).

J. Org. Chem. 2021, 86, 13572-13582

From **9** to **11**: Alkylation of enolate

From **11** to **12**:

Luche reduction

From **12** to **13**:

- 1) Saponification;
- 2) Steglich type esterification

From **13** to **14**:

Upjohn Dihydroxylation

From **14** to **15**:

2-methoxypropene protection

From **11** to **12**:

TBS protection of alcohol

c. Analysis of stereochemical outcome in reduction of 11:

Initial and Revised Retrosynthetic Analysis of (±)Pleurospiroketals A (1) and B (2)

From 23 to 17:

1) Reduction of Weinreb amide

Me Me Me Me、 Me Me Me Me. Me Me Me OTBS OTBS Me OTBS OTBS OTBS OTBS οΘ P Me Me Ο Base Me Θ NMe₂ :Base H₂CĒŅ⊕ ⊕`N==

From **25** to **26**: Corey-Seebach Reaction

From 26 to 8:

TMS protection of alcohol

From **17** to **27**:

DMP Dess–Martin periodinane

Table 2. Efforts on the Dithiane Deprotection of 6

entry	reagents	conditions	result
1	I ₂ , sat. aq. NaHCO ₃	CH ₃ CN	6 recovered
2	NaH ₂ PO ₄ , NaClO ₂ , 2-methyl-2-butene	MeOH:H ₂ O (2:1)	complex mixture
3	H ₅ IO ₆	Et ₂ O, THF, 0 $^{\circ}$ C	complex mixture
4	HgCl ₂ , CaCO ₃	THF/CH ₃ CN/H ₂ O (1:8:1)	complex mixture
5	CuCl ₂ , CuO	acetone:H ₂ O	complex mixture
6	ZnBr ₂	CH ₂ Cl ₂ , MeOH, rt, 4 h	decomposed
7	MeI, K ₂ CO ₃	CH ₃ CN/H ₂ O (10:1), 45 °C, 5 h	complex mixture
8	Eosin Y, 45 W, CFL	CH ₃ CN/H ₂ O, rt, open-air	complex mixture

From **27** to **28:** 1,3 -dithiane deprotection

From **29** to **1** and **2**:

Hydrolysis of the protecting groups

R²= Me/t-Bu

Acid-induced spiroketalization

но___он

From 6 to 30:

Acid-induced spiroketalization

Oxidative 1,3-dithiane deprotection

PIFA. Phenyliodine(III) bis(trifluoroacetate)