
Asymmetric Total Synthesis of Rumphellclovane E

Guanggen Liu,[†] Zhijiang Zhang,[†] Shaomin Fu,* and Bo Liu*

- isolated from the gorgonian coral *Rumphella antipathies*
- tricyclo[6.3.1.0]dodecane ring system
- 3 stereocenters
- 8 steps synthesis in B–AB–ABC construction sequence
- this synthesis serves as a general platform to concisely access the clovane-type sesquiterpenoids.

Danylo Hatych
Liu Research Group
Total Synthesis Presentation
02/10/2021

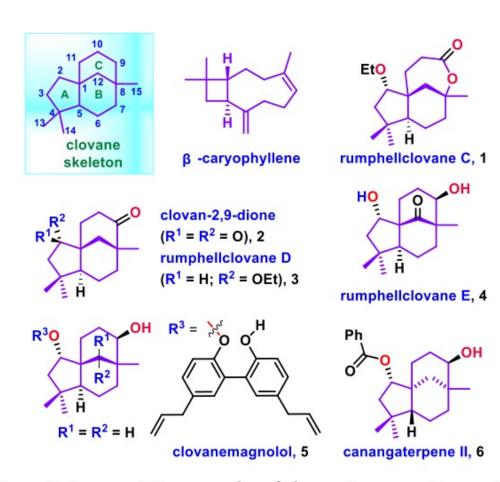
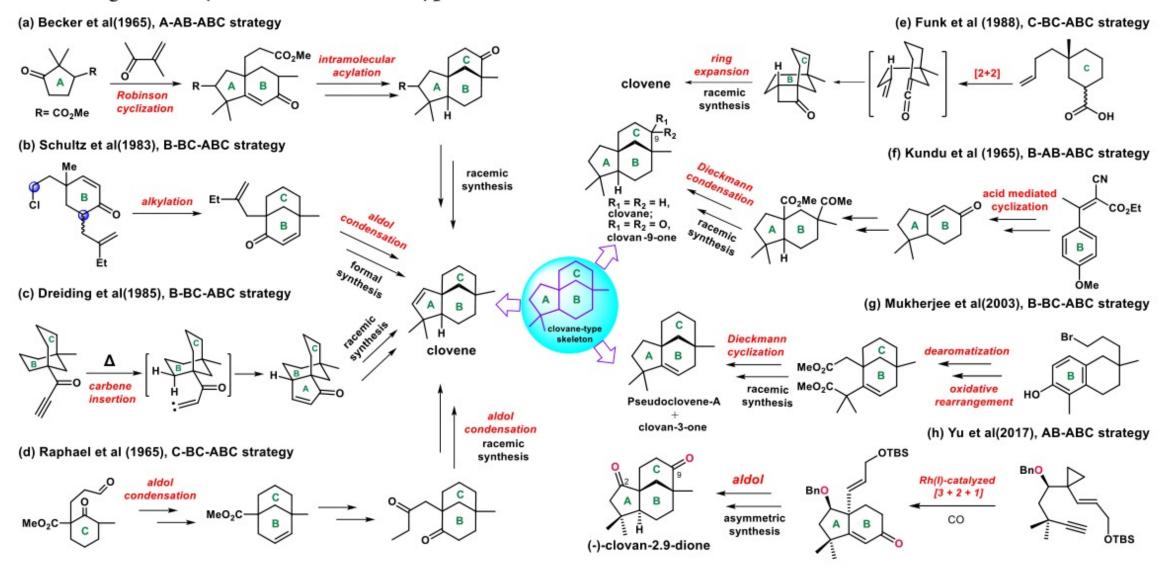



Figure 1. Representative examples of clovane-type sesquiterpenoids.

Scheme 1. Progress in Syntheses of Clovane-type Natural Products

Retrosynthetic analysis of Rumphellclovane E

From 10 to 11: Rh-catalyzed cyclopropanation

bis[rhodium($\alpha,\alpha,\alpha',\alpha'$ -tetramethyl-1,3-benzenedipropionic acid

Rh₂(esp)₂

From **9** to **12**: Intramolecular acylation

EtO
$$\frac{\text{Et}_3\text{N}}{\text{Et}_3\text{N}}$$
 EtO $\frac{\text{Et}_3\text{N}}{\text{Et}_3\text{N}}$ Fe(acac)₃ Fe³⁺ $\frac{\text{Et}_3\text{N}}{\text{Separable}}$ inseparable diasteromers $\frac{\text{Et}_3\text{N}}{\text{Separable}}$ Ta/7b (separeted)

From 12 to 8: Michael addition

From **8** to **7a/7b**: Metal-catalyzed reductive aldol reaction

From **7a/7b** to **15a/15b** : TBS protection of alcohol

From **15a/15b** to **16:** Hydrogenolysis under heterogeneous Catalysis

A-B

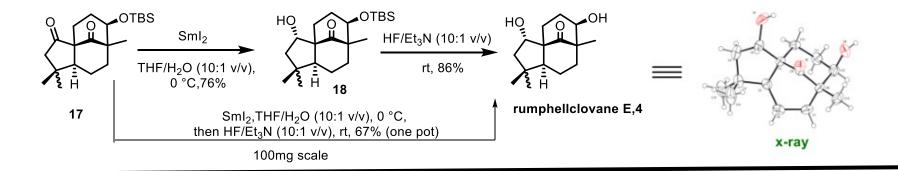
A-B

A-B

A-B

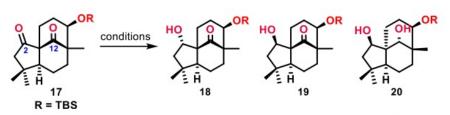
H-H

A-B

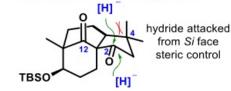

HA + BH

hydride transfer

$$A - B$$


hydrogen transfer

From **16** to **17**: Hydrolysis and decarboxylation


From 17 to 18: Selective reduction of carbonyl

From 18 to 4: TBS deprotection



entry	conditions	yield ^a (%)
1	1 equiv of NaBH₄, MeOH, −78 °C	19, 73
2	1 equiv of LiAlH ₄ , THF, -78 °C	19, 69
3	1 equiv of (R)-CBS, ^c 1.5 equiv of BH ₃ , THF, –78 °C	20, 65
4	1 equiv of (S)-CBS, ^d 1.5 equiv of BH ₃ , THF, -78 °C	20 , 51 (72% brsm)
5	0.1 mol/L of SmI ₂ , THF/H ₂ O(10:1 v/v), 0 °C	18, 76
6	0.1 mol/L of SmI ₂ , THF/MeOH (10:1 v/v), 0 °C	nr ^b

(a) Rationale for achieving 19 & 20

(b) Rationale for achieving 18

