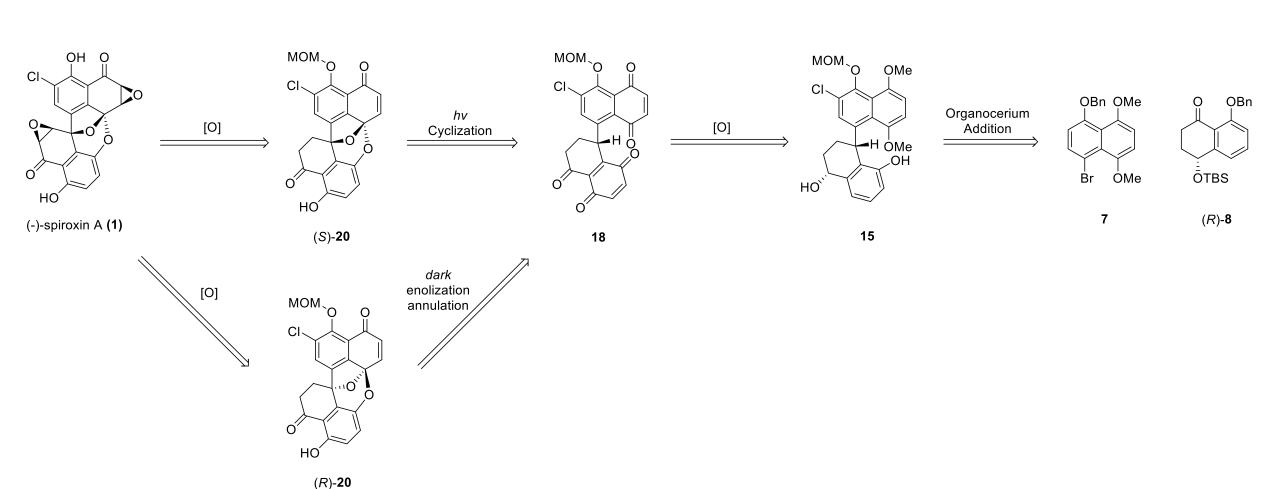
Stereochemical Dichotomy in Two Competing Cascade Processes: Total Syntheses of Both Enantiomers of Spiroxin A


Dr. Yoshio Ando, Daisuke Tanaka, Ryota Sasaki, Prof. Dr. Ken Ohmori, Prof. Dr. Keisuke Suzuki 🔀

Sierra Bentley Liu Research Group September 26th, 2019

I. Introduction

- First total synthesis of both enantiomers of spiroxin A
- Spiroxin A is a marine antibiotic which has potential biological activity.
- Its structure contains a unique naphthoquinone dimer along with a highly complex architecture, strain from the distorted caged, various functional groups and multiple stereogenic centers.

II. Retrosynthesis

Cl⊖

Diels-Alder followed by ring opening:

Benzyl Protection and NBS bromination:

Benzyl Protection:

Reduction using Ruthenium Catalyst:

OBn
$$Ac_2O, pyridine$$

$$DMAP, CH_2Cl_2$$

$$OBn$$

$$Ce(NH_4)_2(NO_3)_6$$

$$CH_3CN, H_2O, 0 °C$$

$$OAc$$

Protection of alcohol:

Oxidation using Ceric Ammonium Nitrate:

TPAP Oxidation:

Deprotection and Reprotection of Alcohol:

Lithium halogen exchange followed by addition to ketone and dehydration:

OBn OMe
$$H_2$$
, 10% Pd / C THF , MeOH, 24 °C $TBSO$ $TBSO$

Benzyl Deprotections:

Pivaloyl Preotection:

Chlorination by Baran's reagent:

MOM Protection:

Deprotection of the Pivaloyl group:

Deprotection of the TBS group:

S-5

Quinone Oxidation of phenol:

Quinone Oxidation using CAN:

Dess-Martin Oxidation:

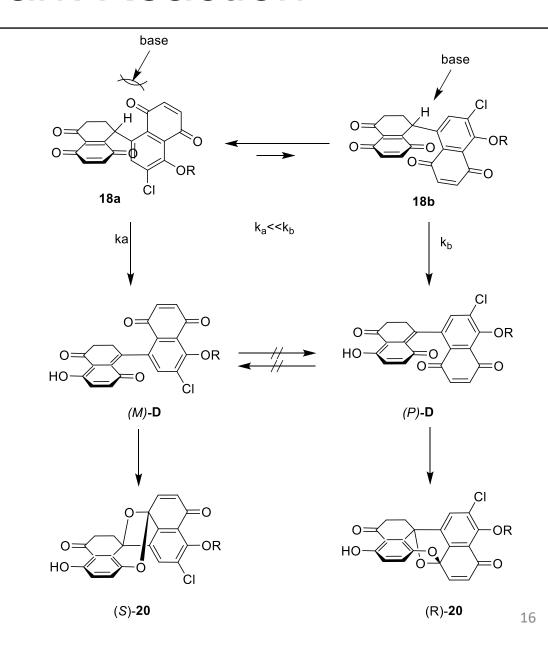
21

MOM Protection:

Nucleophilic Epoxidation:

S-7

Ito-Saegusa Oxidation:


S-10

22

Nucleophilic Epoxidation:

MOM Deprotection:

Rationale for Dark Reaction

Synthetic Pathway for the (R) Enantiomer in the Dark

Enolization-annulation: