
Enantioselective Total Synthesis of Nigelladine A via Late-Stage C-H Oxidation Enabled by an Engineered P450 Enzyme

Loskot S. A., Romney D. K., . Arnold F. H. Arnold, Stoltz B. M. J. Am. Chem. Soc. 2017, 139, 10196-10199

norditerpenoid alkaloids, nigelladines A–C (1–3), and pyrroloquinoline alkaloid, nigellaquinomine (4)

- 1. Were recently isolated from *Nigella* glandulifera. All possessing new skeletons with highly conjugated
- These alkaloids exhibited potent protein tyrosine phosphatase 1B (PTP1B) inhibitory activity
- The first enantioselevtive total synthesis of Nigelladine A

Retrosynthesis:

Challenge: intallation of C7 ketone at late-stage

Forward Synthesis

3

Preparing for Substrate 10

$$\begin{array}{c} \overset{\oplus}{\text{OH}} \\ \overset{\ominus}{\text{OH}} \\ \overset{\bullet}{\text{OH}} \\ \overset{\bullet}{\text{OH}} \\ \overset{\bullet}{\text{OH}} \\ \overset{\bullet}{\text{OH}} \\ \overset{\bullet}{\text{OH}} \\ \overset{\bullet}{\text{OH$$

Tsuji-Wacker

$$\beta$$
-H elimination reductive elimination β -Hodel β -hydride elimination β -hydride e

KOH

_

$$\begin{array}{c} O \\ N=N=N \end{array} \begin{array}{c} O \\ N=N \end{array} \begin{array}{c} O \\$$

BocHN Bpin
$$B_2$$
Pin₂ +CuCl+LiCl B_2 Pin₂ +CuCl+LiCl B_2 Pin₃ +CuCl+LiCl B_2 Pin₄ +CuCl+LiCl B_2 Pin₅ +CuCl+LiCl B_2 Pin₆ +CuCl+LiCl B_2 Pin₇ +CuCl+LiCl B_2 Pin₈ +CuCl+LiCl B_2 Pin₉ +CuCl+LiCl B_2 Pin₉

Buchwald's Secondgeneration Ligand