

Stereoselective Total Synthesis of Bioactive Marine Natural Product Biselyngbyolide B

Sayantan Das, Debobrata Paul, and Rajib Kumar Goswami*

Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India

- 18-membered macrolide with four stereogenic centers;
- Exhibits inhibitory growth of human cervical cancer and leukemia cells;
- Cytotoxic against various human tumor cell lines in submicromolar concentrations;
- Biselyngbyolide B possesses 30- to 100- fold apoptosis-induction compared to congener, Biselyngbyaside

Retrosynthesis:

Synthesis of Intermediate 8:

"Jamison's Protocol":

DMP Oxidation:

Synthesis of Intermediate 8:

Brown Allylation:

Swern Oxidation:

Witting Olefination:

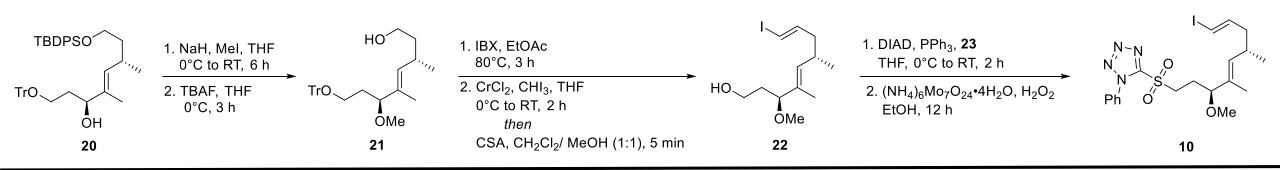

$$\begin{bmatrix} Ph & O \\ Ph & Ph & O \\ Ph$$

DIBAL-H Reduction:

Crimmins Acetate Aldol:

Sodium Borohydride Reduction:

Hydroxyl Protection:


Methylation:

Desilylation:

IBX Oxidation:

Takai Olefination:

Mitsunobu Reaction:

Oxidation to Sulfone:

1. TBDPSCI, imidazole

Epoxide Opening:

Silyl Protection:

Sodium Periodate Diol Cleavage:

Synthesis of Acid Fragment 9:

Julia-Kocienski Olefination:

Desilylation with CSA:

Synthesis of Acid Fragment 9:

Pinnick Oxidation:

Completion of Biselyngbyolide B:

Shiina Esterification:

Completion of Biselyngbyolide B:

Heck Reaction:

 Table 2. Optimization of Intramolecular Heck Cross-Coupling

Entry	Reagents	Temperature (°C)	Time (h)	Yield (%)
1	Pd(PPh ₃) _{4,} NEt ₃ , MeCN	60	3	decomposition
2	PdCl ₂ (MeCN) ₂ , NEt ₃ , CO ₂ H ₂ , MeCN	25	3	decomposition
3	PdCl ₂ (PPh ₃) ₂ , K ₂ CO ₃ , Bu ₄ NCl, DMF	60	3	trace
4	Pd(OAc) ₂ , K ₂ CO ₃ , Bu ₄ NCl, DMF	60	1	58