Algebra Qualifying Exam

Fall 2014

You have 3 hours to answer all questions.

1. Determine the number of conjugacy classes of elements of order 4 in $\mathrm{GL}_{4}(\mathbb{C})$, and give a representative of each class. Do the same for $\mathrm{GL}_{4}\left(\mathbb{F}_{7}\right)$.
2. Find the Galois groups of $f(x)=x^{5}+7 x^{3}+6 x^{2}+x+5$ over $\mathbb{F}_{2}, \mathbb{F}_{3}, \mathbb{F}_{5}$, and \mathbb{Q}. You may assume without proof that $f(x) \in \mathbb{F}_{3}[x]$ has no irreducible quadratic factors.
3. Let R be a Noetherian ring. For any ideal $J \subset R$ define

$$
\sqrt{J}=\left\{x \in R: x^{k} \in J \text { for some } k \in \mathbb{Z}^{+}\right\} .
$$

If $\sqrt{J}=J$, show that J can be expressed as a finite intersection of prime ideals. Hint: among all counterexamples, a maximal one cannot be prime.
4. Classify the groups of order $2915=5 \cdot 11 \cdot 53$.
5. Suppose R is a PID and A and B are R-modules. Let $B_{\text {tors }} \subset B$ be the submodule of R-torsion elements. Prove that

$$
\operatorname{Tor}_{1}^{R}(A, B) \cong \operatorname{Tor}_{1}^{R}\left(A, B_{\mathrm{tors}}\right)
$$

6. Suppose R is a Noetherian ring and $\mathfrak{p} \subset R$ is a prime ideal. Show that there is an $r \notin \mathfrak{p}$ such that $S^{-1} R \rightarrow R_{\mathfrak{p}}$ is injective, where $S=\left\{1, r, r^{2}, r^{3}, \ldots\right\}$.
7. Suppose R is a commutative local ring, and M and N are R-modules satisfying

$$
M \otimes_{R} N=0
$$

(a) If M and N are finitely generated, show that either $M=0$ or $N=0$.
(b) Show by example that (a) is false if we drop the hypothesis that M and N are finitely generated.
8. Let $\zeta_{8} \in \mathbb{C}$ be a primitive eighth root of unity. The ring of integers in $\mathbb{Q}\left[\zeta_{8}\right]$ is $\mathbb{Z}\left[\zeta_{8}\right]$ (you may assume this without proof). If p is a prime, determine the number of primes of $\mathbb{Z}\left[\zeta_{8}\right]$ above p when
(a) $p=2$,
(b) $p \equiv 1(\bmod 8)$,
(c) $p \equiv 3,5,7(\bmod 8)$.

