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Abstract

We consider a risk averse decision maker who dislikes ambiguity as
in the Ellsberg urns. We analyze attitudes to ambiguity when the
decision maker is exposed to unrelated sequences of ambiguous sit-
uations. We discuss the Choquet expected utility, the smooth, and
the maxmin models. Our main results offer conditions under which
ambiguity aversion disappears and conditions under which it does not.

Keywords: Ellsberg urns, repeated ambiguity, repeated risk, Choquet ex-
pected utility, maxmin, the smooth model

1 Introduction

A patient suffers from a certain disease. The doctor offers two possible treat-
ments. A standard, well investigated treatment Y , which with probability p
leads to a good outcome and with probability 1− p leads to a less favorable
outcome, which is still better than no treatment.1 Alternatively, she offers
him a new treatment L with somewhat ambiguous probabilities of success.
It is however known that whatever the outcome, it improves over that of the
standard treatment. Moreover, although the probabilities are not known for
sure, they are believed to be somewhere around p : 1− p. Let X denote the
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probabilistic lottery yielding the outcomes of L with the believed probabili-
ties and assume that the expected value of X is zero. Note that X dominates
Y by first-order stochastic dominance. Both treatments are preferred to no
treatment and the question is which of the two to choose. The patient is
ambiguity averse, and as the improvement in the outcomes of the new treat-
ment is not much, he prefers the old treatment with the known probability
of success. In other words, Y � L.

The doctor does not have any information she did not share with the
patient. Moreover, although she knows that she will see many patients like
him, she believes that she won’t gain any information about the probabil-
ity of success of the new treatment, as this probability depends entirely on
unobservable characteristics of the patients. Her preferences over risk and
uncertain prospects are the same as the patient’s (alternatively, she adopts
the patient’s preferences). Does it follow that she too will prefer the standard
treatment to the new one?

Although they have exactly the same information and preferences, there
is one dimension in which the patient and the doctor are different, and this is
the number of cases they face. The patient sees only one case, his. Ambiguity
aversion can be explained as fear of the unknown. Many people believe
that they are unlucky and therefore, if they choose the ambiguous prospect,
they’ll find out that the winning probabilities took a bad turn and are on the
lower side of their expectations. But such people do not necessarily believe
that they are always unlucky. Thus the doctor is ambiguity averse, but
as she is facing many similar cases, her aversion to each case may diminish.
Furthermore, this may lead her to prefer the new treatment over the standard
one.

In this paper we formalize this discussion. Suppose that the doctor has
to make a decision for n > 1 (identical) people. Denote n repetitions of the
standard treatment by Y n and of the new treatment by Ln. Both are better
than no treatment. We show that under some conditions, and for sufficiently
large n, Ln � Y n. That is, n repetitions of the new treatment are, eventually,
preferred over n repetitions of the standard treatment (Theorem 1).

Next consider an alternative scenario involving, again, a patient and a
doctor. This time, avoiding treatment does not lead to a bad outcome but
may be costly, and only the ambiguous treatment L is available. Suppose
that the probabilistic lottery X, yielding the outcomes of L with the believed
probabilities p : 1 − p, has a positive expected value and that X and all its
repetitions Xn are preferred to no treatment, no matter how small is its
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cost, while no treatment is preferred to L. Can it be the case that eventually
Ln becomes desirable? We show that this is indeed the case. Under some
conditions, n repetitions of the ambiguous treatment are eventually preferred
to no treatment (Theorem 2).

Should society encourage, maybe even enforce, the use of the ambiguous
treatment? Patients may be willing to pay the extra price for the unambigu-
ous treatment if it exists, or to bear the cost of no treatment if an alternative
treatment does not exist. But if society adopts the point of view of social
planers and care takers (even if they do not have any better information),
then it may opt out for the ambiguous treatment. Providing general an-
swers to such questions is beyond the scope of the current paper but our
aim is to show that, at least under some conditions, such questions are not
meaningless.

Theorems 1 and 2 of section 3 analyze Choquet expected utility prefer-
ences (Schmeidler [27]). Under some conditions, similar results hold in the
smooth recursive utility model (Klibanoff, Marinacci, and Mukerji [15]), but
under some other conditions they do not hold (Theorem 3 in Section 4). On
the other hand, in the maxmin expected utility model (Gilboa and Schmei-
dler [13]) similar results hold only under some extreme conditions (Theorem 4
in Section 5). We discuss some further issues and the literature in section 6.
All claims are proved in the appendixes.

2 Setup

One ball is picked at random out of an urn containing Γ balls of γ colors. Let
si be the state of nature “color i is picked.” Denote S = {s1, . . . , sγ}, and
define Σ = 2S. The number of balls of some colors may be known to be Γ/γ,
making the corresponding states of nature probabilistic with probability 1

γ
.

This ratio also serves as an anchor for non probabilistic states and events.
For example, in the 3-color Ellsberg [4] urn which contains 90 balls, of which
30 are red and each of the other 60 is either black or yellow, the anchoring
probabilities are 1

3
for each of the three colors and 2

3
for each of complementing

events.2 For more on the anchoring probabilities, see Fox and Tversky [11],

2More complicated urns are also possible, for example, an urn containing 100 balls.
Twenty of which are yellow, and each of the others is either red or green. The anchoring
probabilities for (Y,R,G) are ( 1

5 ,
2
5 ,

2
5 ), but this situation can easily be described as an urn

containing balls of five colors.
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Nau [21], Chew and Sagi [3], and Ergin and Gul [7]. For E = {si1 , . . . , si`} ∈
Σ, let P (E) = `

γ
.

Assume now the existence of a sequence of such urns. Let Si = S be the
set of states in urn i with the corresponding algebra Σi = Σ. The information
regarding each of these urns is the same. Moreover, the outcome, or even the
mere existence of any urn doesn’t change the decision maker’s information
regarding any other urn. Let Sn = S1 × . . . × Sn and Ωn = 2S

n
(note that

Ω1 = Σ). For E ∈ Ωn, define P n(E) to be the number of sequences in E
divided by γn.

Consider a non-degenerate act L = (x1, E1; . . . ;xm, Em) where x1, . . . , xm
∈ <, x1 < . . . < xm, and E1, . . . , Em is a partition of Σ. The outcomes
x1, . . . , xm denote departures from the current wealth level, which is assumed
throughout to be fixed. Define the anchor lottery X = (x1, p1; . . . ; xm, pm)
where pi = P 1(Ei) := P (Ei) is the anchor probability of Ei and denote its
expected value by E(X). The act Ln is the sequence of act L played once on
each of the n urns. We assume that the decision maker is interested in the
total sum of outcomes he wins but not in the order or the composition of col-
ors leading to these wins and will therefore view Ln as (xn1 , E

n
1 ; . . . ;xnkn , E

n
kn

),
where xn1 = nx1 < . . . < xnkn = nxm and En

i is the collection of sequences of
events from Σ1, . . . ,Σn such that the sum of their corresponding outcomes
is xni . The lottery Xn = (xn1 , p

n
1 ; . . . ;xnkn , p

n
kn

) is a sequence of n independent
lotteries of type X where pni is the anchor probability P n(En

i ). The lottery
Xn serves as a natural anchor for Ln.

Consider a decision maker with preferences �n over Ln, the space of all
real acts over Ωn. We assume that the decision maker evaluates lotteries with
known probabilities using expected utility theory with the twice differentiable
vNM function u. We assume that the decision maker is risk averse (hence his
vNM utility u is concave) and ambiguity averse in the sense that he prefers

playing Xn to playing Ln. Finally, we assume throughout that lim
x→−∞

u′′(x)
u′(x)

exists, but not necessarily that it is finite.

3 Choquet Expected Utility

In this section we consider preferences over ambiguous prospects that can be
represented by the Choquet expected utility (CEU) model (Schmeidler [27]).
According to this theory, there are capacities νn : Ωn → [0, 1] such that
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νn(∅) = 0, νn(Sn) = 1, and the value of Ln, CEUn(Ln), is

u(xnkn)νn(En
kn) +

kn−1∑
i=1

u(xni )

[
νn

(
kn⋃
j=i

En
j

)
− νn

(
kn⋃

j=i+1

En
j

)]
(1)

To ensure ambiguity aversion we assume that νn(E) 6 P n(E) for all E ∈ Ωn,
which is equivalent to P n ∈ Core(νn).3

Ambiguity aversion permits the union of two ambiguous events to be
non-ambiguous. For example, in the 3-color Ellsberg urn, the union of the
two ambiguous colors leads to an event with probability 2

3
. The contribution

of an event to the value of a lottery can therefore be larger than its anchor
probability. If there is only a finite number of events, then there is of course an
upper bound to the ratio between the contribution of the capacities generated
by all events and their anchor probabilities. Our main requirement is that
the following boundedness condition holds uniformly for all n, that is, that
the potential over-estimation of the contribution of all events will not go to
infinity. Formally:

Boundedness There is K such that for all n and for all disjoint events
E,E ′ ∈ Ωn, νn(E ∪ E ′)− νn(E) 6 KP n(E ′).

This condition is satisfied in a trivial way if the capacity is a probability
measure. The following is an example of non-probabilistic capacities that
satisfy boundedness.

Example 1 Assume urns with 100 balls each of two colors, G and R. When
there are n urns, there are 2n possible outcomes of the samples (that is,
{G,R}n), with typical elements t = (t1, . . . , tn), where for all i, ti ∈ {G,R}.
Recall that the anchor probability P n of each event E is |E|/2n. Define
capacities νn by

νn(E) =

{
0 P n(E) 6 1

2

2P n(E)− 1 otherwise

By definition, νn(E ∪ E ′)− νn(E) 6 |E′|
2n−1 = 2P n(E ′), hence these capacities

are bounded with K = 2.

3The core of a capacity ν is the set of all probability distributions q such that for all
E, q(E) > ν(E).
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Note that this is a product capacity. For all E = E1× . . .×En, νn(E) =∏n
i=1 ν

1(Ei) = 0, unless for all i, Ei = {G,R}, in which case νn(E) =∏n
i=1 ν

1(Ei) = 1. �

Following the discussion in the introduction, consider a given ambiguous
act L with the anchor lottery X. Suppose that the expected value of X
is zero and let X dominate a lottery Y by first order stochastic dominance
(FOSD). Theorem 1 shows that as n → ∞, the decision maker will prefer
playing L for n times (that is, Ln) rather than playing Y for n times.

Theorem 1 Suppose that the CEU preferences satisfy ambiguity aversion,
risk aversion, and boundedness. Let L be an ambiguous act with an anchor
lottery X such that E(X) = 0. Then for every Y dominated by X by strict
FOSD there exists n∗ such that for all n > n∗, Ln � Y n.

Remark: The proof of Theorem 1 covers also the case E(X) < 0, except for

the case where lim
x→−∞

u′(x) =∞ but lim
x→−∞

u′′(x)
u′(x)

= 0.

Consider now a different case, where E(X) > 0. This of course doesn’t
mean that the decision maker accepts X, or even that if he accepts it once
he would accept it n times. And it may certainly happen that he will accept
X, but will decline the corresponding ambiguous act L. For example, the
decision maker may accept the lottery (−100, 1

2
; 110, 1

2
), yet decline the act

where in the two-color Ellsberg urn he wins 110 if he correctly guesses the
color of the drawn ball, but loses 100 if he does not. By continuity, there
are lotteries Y dominated by 0 which are preferred to L. Nevertheless, if for
a sufficiently large n, Xn � 0, then for any lottery Y dominated by 0, the
decision maker prefers Ln to Y n for a sufficiently large n .

Theorem 2 Suppose that the CEU preferences satisfy ambiguity aversion,
risk aversion, and boundedness. Let L be an ambiguous act with an anchor
lottery X such that E(X) > 0. If there exists n0 such that for all n > n0,
Xn � 0, then for every Y dominated by 0 by strict FOSD, there exists n∗

such that for all n > n∗, Ln � Y n.

Stricter results can be obtained with further restrictions on the utility
function u and on the lottery X. Assume first that u is bounded from above,
which is used to avoid phenomena in the spirit of the St. Petersburg paradox.
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Proposition 1 shows that under these conditions, from a certain point on the
ambiguous acts Ln become strictly desirable.4

Proposition 1 Suppose that the CEU preferences satisfy ambiguity aver-
sion, risk aversion, and boundedness and suppose that u is bounded from
above. Let L be an ambiguous act with an anchor lottery X such that
E(X) > 0. If there exists ε > 0 and n0 such that for all n > n0, Xn � nε,
then there exists n∗ such that for all n > n∗, Ln � 0.

Assuming exponential or linear u (thus representing constant absolute
risk aversion), the next proposition strengthens Theorems 1 and 2 to general
acts L, regardless of the expectation of the anchor lottery X.

Proposition 2 Suppose that the CEU preferences satisfy ambiguity aver-
sion, constant absolute risk aversion, and boundedness. Then for every
Y ≺ X there exists n∗ such that for all n > n∗, Ln � Y n.

How restrictive is the boundedness assumption? That is, does bounded-
ness imply that νn converge to a capacity ν with a degenerate core, which
is equal to the anchor probability measure? If this is the case, then the
boundedness assumption makes the analysis trivial, because the limit of the
capacities νn is just the anchor probability vector and CEU becomes EU.
We show however that this is not the case. There are bounded capacities for
which the cores do not converge to a singleton.

Example 1 (contd.) For s ∈ Sn, define

P̃ n(s) =


0 |{i : si = G}| < n

2

0 |{i : si = G}| = n
2

and s1 = G
1

2n−1 otherwise

For each E ∈ Ωn, define P̃ n(E) =
∑

s∈E P̃
n(s). For every E,

P̃ n(E) > 2 max
{
|E|
2n
− 1

2
, 0
}

= νn(E)

4A sufficient condition for boundedness from above is that the Arrow-Pratt measure of
absolute risk aversion is bounded away from 0. That is, that there exists δ > 0 such that
for all z, ru(z) = −u′′(z)/u′(z) > δ. To see it, let v(z) = −e−δz. Then ru(z) > rv(z) and,
by Pratt [23], there exists a concave h such that u = h ◦ v. The boundedness of u follows
from that of v.
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Hence P̃ n is in the core of νn and clearly P̃ n and P n do not converge to the
same limit. �

Our results do not always hold without the boundedness assumption. See
example 2 in the appendix. The boundedness of u from above is required for
Proposition 1. See example 3 in the appendix.

4 The Smooth Model

Klibanoff, Marinacci, and Mukerji [16] suggested the following smooth case
of the recursive model [28]. According to their model, the decision maker
has a set of possible probability distributions, and he attaches a probability
to each of them. He computes the certainty equivalent of the uncertain
act using expected utility with the vNM function u for each of the possible
distributions, and then evaluates the lottery over these values using the vNM
function φ.5 Ambiguity aversion in this model is reflected by φ being more
concave than u. Ambiguity neutrality is obtained when φ and u are the same.

Formally, let L = (x1, E1; . . . ;xm, Em) be an ambiguous act. The decision
maker believes that with probability µi, i = 1, . . . , `, the probability distri-
bution of L is given by pi = (pi1, . . . , p

i
m). Denote Xpi = (x1, p

i
1; . . . ;xm, p

i
m)

and let p =
∑`

i=1 µ
ipi. Hence, X = (x1, p1; . . . ;xm, pm) =

∑`
i=1 µ

iXpi is the
anchor lottery of L. The value of L under the smooth model is given by 6

SMφu(L) =
∑̀
i=1

µi · φ ◦ u−1
(
EUu(Xpi)

)
When there is no ambiguity (that is, the decision maker believes that with
probability 1 the probability distribution associated with L is p), then the
value of L is φ ◦ u−1(EUu(X)) which represents the same order as EU with
the vNM utility u. Note that EUu(X) is the value attached to L by an
ambiguity neutral decision maker for whom φ = u. To see why, observe that

SMuu(L) =
∑̀
i=1

µi · EUu(Xpi) = EUu
(∑`

i=1µ
iXpi

)
= EUu(X)

5The original paper [16] denoted this function v.
6Since this model is using two different vNM functions, we add a superscript index (u

or φ) to indicate the utility function used in the EU operator.
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As before, let Xn and Ln be n-repetitions of X and L. The value of Xn is
EUu(Xn). Consider Ln. A typical sequence in Ln is a list of n lotteries, each
taken from the set {Xp1 , . . . , Xp`}, where Xpi appears ji times, i = 1, . . . , `,
and

∑
i ji = n. The probability of such a sequence is the product of the

corresponding µi probabilities, that is,
∏

i (µ
i)
ji . There are (`)n (` to the

power of n) such possible sequences, denote them {Y n
j }

(`)n

j=1 and denote their
corresponding probabilities µnj . We thus obtain that

SMφu(Ln) =

(`)n∑
j=1

µnj · φ ◦ u−1(EUu(Y n
j )) (2)

The next theorem shows that the results of Theorem 1 hold if the absolute
measures or risk aversion of u and φ converge to the same limit as x→ −∞.
Observe that although φ′′(x)

φ′(x)
≡ u′′(x)

u′(x)
implies that φ is an affine transformation

of u, the restriction lim
x→−∞

φ′′(x)
φ′(x)

= lim
x→−∞

u′′(x)
u′(x)

does not imply that in the limit

φ is an affine transformation of u. For example, let u(x) = x and φ(x) = x3

for x < −1.

Theorem 3 Suppose that the SM preferences satisfy ambiguity and risk
aversion. Let L be an ambiguous act with an anchor lottery X such that
E(X) = 0. If lim

x→−∞
φ′′(x)
φ′(x)

= lim
x→−∞

u′′(x)
u′(x)

, then for every Y dominated by X by

strict FOSD there exists n∗ such that for all n > n∗, Ln � Y n.

Proposition 1 analyzed conditions under which, within the CEU model,
the acts Ln become strictly desirable. The next proposition offers conditions
for a similar result under the SM model. For this, we restrict attention to
the case where u represents constant absolute risk aversion. Observe that by
risk aversion, X � 0 implies that E(X) > 0.

Proposition 3 Suppose that the SM preferences satisfy ambiguity aversion
and constant absolute risk aversion. If lim

x→−∞
φ′′(x)
φ′(x)

= lim
x→−∞

u′′(x)
u′(x)

, then for

every ambiguous act L with an anchor lottery X � 0 there exists n∗ such
that for all n > n∗, Ln � 0.

Theorem 3 and Proposition 3 assume that lim
x→−∞

− φ′′(x)
φ′(x)

= lim
x→−∞

− u′′(x)
u′(x)

.

The next proposition shows the necessity of this condition. We say that the
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risk aversion of utility function u is bounded from above [from below] by ζ if
for all x, −u′′(x)/u′(x) is less than [more than] ζ. The next result shows that
if the degree of risk aversion of φ is bounded from below by t > 0, then for
u with degree of risk aversion that is bounded from above by a sufficiently
small s∗, if Y is sufficiently close to X then Y n � Ln, even if Y ≺ X.

Proposition 4 Let the SM preferences satisfy ambiguity and risk aversion
such that the risk aversion of φ is bounded from below by t > 0. For every
ambiguous act L with anchor lottery X such that E(X) = 0 there is s∗ > 0
and a neighborhood N of X such that if the risk aversion of u is bounded
from above by s∗, then for every Y ∈ N there is n∗ such that for all n > n∗,
Y n � Ln.

The next proposition shows that if u represents constant absolute risk
aversion and φ represents a higher degree or risk aversion, then for each
ambiguous lottery L, regardless of the expected value of its probabilistic
anchor X, for Y which is sufficiently close to X, Y n � Ln, even if Y ≺ X.

Proposition 5 Let the SM preferences satisfy ambiguity aversion and con-
stant absolute risk aversion with parameter s. If φ is bounded from below
by t > s, then for every ambiguous act L with anchor lottery X there is a
neighborhood N of X such that for every Y ∈ N there is n∗ such that for
all n > n∗, Y n � Ln.

5 Maxmin Expected Utility

Gilboa and Schmeidler [13] suggested the following maxmin expected utility
(MEU) theory. Under ambiguity, the decision maker behaves as if he has
a (convex) set of possible probability distributions as well as a utility func-
tion u. For each act he computes the expected utility of u with respect to
the different possible probability distributions, and evaluates the act as the
minimum of these values.

As in the previous chapters, let L = (x1, E1; . . . ;xm, Em) be an ambiguous
act and denote the set of possible probability distributions by Q, with typical
elements of the form q = (q1, . . . , qm). As before, X = (x1, p1; . . . ;xm, pm)
is the anchor lottery associated with L. Denoting Xq = (x1, q1; . . . ;xm, qm),
the value of L under the maxmin model is given by

MEU(L) = min
q∈Q

EU (Xq)
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An event E is ambiguous if the decision maker may treat it differently
from its anchor probability. This means that if the decision maker is ambi-
guity averse, then the anchor probability P 1(E) is not the minimal possible
value of the range of the possible probabilities of E. To see why, note that
if L is not a probabilistic act, then there must be at least two ambiguous
events in its support. Therefore, there is a lottery Xq̂ that is dominated by
X by FOSD. By definition, MEU(L) 6 EU(Xq̂) < EU(X).

Consider Ln =
(
xn1 , E

n
1 ; . . . ;xkn , E

n
kn

)
and the corresponding anchor lot-

tery Xn =
(
xn1 , p

n
1 ; . . . ;xnkn , p

n
kn

)
where pnj = P n(En

j ). As is standard in the
literature, we assume that the set of possible priors for Ln is Qn = Q×. . .×Q
and define

MEU(Ln) = min
qn∈Qn

EU(Xn
qn)

As the lottery (Xq̂)
n is possible under this set of priors, it follows that the

priors in Qn that minimize the value of Ln must yield a value that cannot
exceed the value of (Xq̂)

n.
Suppose that the decision maker is extremely risk averse, in which case

his evaluation of a lottery will be close to his evaluation of its worst outcome.
Since Ln cannot be inferior to its worst outcome nx1, it follows that such a
decision maker will be almost indifferent between Xn and Ln. Let Y = X−ε
for some ε > 0. Since the worst outcome of Y n is n(x1 − ε), an extremely
risk averse person will eventually prefer Ln to Y n. Theorem 4 formalizes
this argument, and shows that this is the only case in which the repeated
ambiguous act Ln becomes superior to every such Y . Otherwise, the extreme
level of ambiguity aversion generated by the maxmin model will keep Ln less
desirable than Y n for a sufficiently small ε.

Theorem 4 Let the MEU preferences satisfy ambiguity and risk aversion
and let L be an ambiguous act with an anchor lottery X such that E(X) = 0.

1. If lim
x→−∞

u′′(x)
u′(x)

= ∞, then for every Y = X − ε, ε > 0, there exists n∗

such that for all n > n∗, Ln � Y n.

2. If lim
x→−∞

u′′(x)
u′(x)

<∞, then there exists ε > 0 such that for all Y = X− ε′,
ε′ < ε, there exists n∗ such that for all n > n∗, Y n � Ln.

Consider now the case E(X) > 0. The following proposition demonstrates
that if there exists q̃ ∈ Q for which the expected value of Xq̃ is negative,

11



then the implications of Theorem 2, Proposition 1 (of the CEU model) and
Proposition 3 (of the smooth model) do not hold.

Proposition 6 Let the MEU preferences satisfy risk aversion. For every
ambiguous act L with an anchor lottery X such that E(X) > 0, if there
exists q̃ ∈ Q such that E(Xq̃) < 0 then for a sufficiently large n, 0 � Ln.

6 Discussion

As early as 1961 did William Fellner [8, pp. 678–9] ask: “there is the question
whether, if we observe in him [the decision maker] the trait of nonadditivity,
he is or is not likely gradually to lose this trait as he gets used to the uncer-
tainty with which he is faced.” Fellner pointed out a fundamental problem
in answering this question empirically: In an experiment, decision makers
may understand that the ambiguity is generated by a randomization mecha-
nism and is therefore not ambiguous, but this is not necessarily the case with
processes of nature or social life.

Our analysis shows that a lot depends on the way we choose to model
ambiguity. But at least under some assumptions, some aspects of ambiguity
aversion become insignificant when the decision maker is faced with many
similar ambiguous situations within the CEU and the smooth models, and
even in the maxmin model. The term “similar” is of course not well defined,
but loosely speaking, our analysis shows that even though decision makers
don’t learn anything new about the world as they face repeated ambiguity,
they may still learn not to fear this lack of knowledge.

The proofs of Theorems 1, 3, and 4 reveal another property of preferences
as n increases to infinity. Denote by cn and dn the certainty equivalents of
Xn and Ln. These theorems show that lim

n→∞
dn

n
= lim

n→∞
cn

n
. This interpretation

of the theorems deals with the certainty equivalents per case. An alternative
way to analyze attitudes per case is to divide the act Ln and the anchoring
lottery Xn by n. The probabilistic lottery will then converge to its average.
Maccheroni and Marinacci [18] proved that as n → ∞, the capacity of the
event “the average outcome of the ambiguous act L is between its CEU (with
the linear utility u(x) = x) and minus the CEU value of −L” is one. This
result however is irrelevant to our analysis, as the difference in the limits
of Ln

n
and Xn

n
does not determine the decision maker’s preferences and, in

particular, does not imply that dn

n
and cn

n
do not converge to the same limit.
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For example, consider EU preferences where X = (−100, 1
2
; 200, 1

2
), Y =

(1, 1), and u(x) = −e−ax such that c1(X) = 0. Then, lim
n→∞

Xn

n
= 50 > 1 ≡ Y n

n

while cn(Xn)
n

= 0 < 1 = cn(Y n)
n

. By continuity, a similar example can be
created for the CEU model.

Similarly to this extension of the law of large numbers, the central limit
theorem of classical probability theory was also extended to the uncertainty
framework. This was done by Marinacci [20], who used a certain set of capac-
ities, and by Epstein, Kaido, and Seo [6], who made use of belief functions.
The latter authors also studied confidence regions. However, by the preced-
ing argument, and as was argued by Samuelson [25], when decision makers
are confronted with sequences like Xn they may not evaluate them by looking
at the limit of their average distributions.

Very few experiments checked attitudes to repeated ambiguity (although
it seems that several more are currently being conducted). Liu and Col-
man [17] report that participants chose ambiguous options significantly more
frequently in repeated-choice than in single-choice. This suggests that repeti-
tion diminishes the effect of ambiguity aversion. Filiz-Ozbay, Gulen, Masatli-
oglu, and Ozbay [9] report that ambiguity aversion diminishes with the size
of the urn. The intuition behind their result agrees with our finding, since
both are based on the idea that the more options there are (number of balls
to draw from or a larger number of urns) the less plausible is the extreme
pessimistic view that Nature always acts against the decision-maker. On the
other hand, Halevy and Feltkamp [14] and Epstein and Halevy [5] conducted
experiments that involve drawing from two urns and report that when no
information regarding the dependence between the urns is provided, individ-
uals display higher ambiguity aversion with respect to it.

Other models imply a connection between CEU and EU. Klibanoff [15]
studied the relation between stochastic independence and convexity of the
capacity in the CEU model 7 and found that together they imply EU (hence
the capacity must be additive). His results are not related to ours since we
do not assume stochastic independence and, furthermore, the capacities we
analyze are not required to be convex.

7Convexity of the capacity ν means that ν(E) + ν(E′) 6 ν(E ∪E′) + ν(E ∩E′). Note
however that we do not require the capacities νn to be convex. For further analysis of
these concepts, see Ghirardato and Marinacci [12] and Chateauneuf and Tallon [2]. See
also Machina and Siniscalchi [19].
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Appendix A: Proofs

Given the anchor lottery Xn = (xn1 , p
n
1 ; . . . ;xnkn ; pnkn), define gn : [0, 1]→ [0, 1]

such that for i = 1, . . . , kn,

gn

(
i∑

j=1

pnj

)
= 1− νn

(
kn⋃

j=i+1

En
j

)

and let gn be piecewise linear on the segment [0, pnkn ] and on the segments

[
∑i

j=1 p
n
j ,
∑i+1

j=1 p
n
j ], i = 1, . . . , kn − 1. Note that by ambiguity aversion for

all E, νn(E) 6 P n(E), hence by the piece-wise linearity of gn, we have
gn(p) > p. Eq. (1) thus becomes

CEUn(Ln) = u(xn1 )gn(pn1 ) +
kn∑
i=2

u(xni )

[
gn

(
i∑

j=1

pnj

)
− gn

(
i−1∑
j=1

pnj

)]

Denote by FZ the distribution of lottery Z. In the sequel we use the
integral versions of the expected utility and the CEU models:

EU(Xn) =

∫
u(z) dFXn(z)

CEUn(Ln) =

∫
u(z) dgn(FXn(z))

Observe that by the boundedness assumption, for each n, gn is Lipschitz with
K. That is, for all p > p′, g(p) − g(p′) 6 K(p − p′). Finally, we denote the
certainty equivalents of Xn and Ln by cn and dn respectively. In the proofs
of this Appendix we show the relationships between lim

n→∞
cn

n
and lim

n→∞
dn

n
to

obtain the desired results regarding the certainty equivalents of the various
repeated lotteries.

The proofs of this appendix use several claims regarding expected utility
theory. All these claims are proved as lemmas in Appendix B.

Proof of Theorem 1: We first prove that lim
n→∞

dn

n
= lim

n→∞
cn

n
. We divide the

proof into three cases. Assume throughout, wlg, that u(0) = 0 and u′(0) = 1.

(i) lim
x→−∞

u′(x) = H <∞ : Since u is concave, lim
x→−∞

u′′(x) = 0. By Lemma 5

case (i), lim
n→∞

cn

n
= E(X). Since for all n, dn 6 cn 6 nE(X), it is enough

14



to prove that lim
n→∞

dn

n
> E(X). Define w(x) = min{Hx, 0}. By assumption,

u(x) > w(x) for all x. Let CEUn
w denote the CEUn functional with respect

to w. Then CEUn(Ln) > CEUn
w(Ln). Hence for sufficiently large n

u(dn) > CEUn
w(Ln) =

∫
w(z) dgn(FXn(z)) = H

∫
z60

z dgn(FXn(z))

> KH

∫
z60

z dFXn(z) > KH

(
x1σ

2

n2(α−1)
− nα + nE(X)

)
where the last inequality follows by Lemma 2. Since u is concave and u′(0) =

1, dn > KH( x1σ2

n2(α−1) − nα + nE(X)). Therefore, lim
n→∞

dn

n
> KH lim

n→∞
( x1σ2

n2α−1 −
1

n1−α + E(X)) = E(X) = 0.

(ii) lim
x→−∞

u′(x) =∞ : We have

lim
n→∞

CEUn(Ln)

EU(Xn)
6 lim

n→∞

∫
x<0

u(x) dgn(FXn(x))

EU(Xn)

6 lim
n→∞

K
∫
x<0

u(x) dFXn(x)

EU(Xn)
= K

The second inequality follows by the fact that all the gn functions are Lip-
schitz with the same value of K and the equality is obtained by Lemma 3.
Observe that numerators and denominators of all expressions are negative.
It thus follows that for sufficiently large n,

u(dn) > (K + 1)u(cn) (3)

Let a = lim
x→−∞

− u′′(x)
u′(x)

. We consider two cases:

(ii-a) a = 0 : Since u is concave, u(0) = 0, and u′(0) = 1, (K + 1)u(cn) >
u((K + 1)cn), implying dn > (K + 1)cn. By Lemma 5 case (ii), lim

n→∞
cn

n
= 0,

hence lim
n→∞

dn

n
= 0.

(ii-b) a > 0 : It follows by the concavity of u and by the fact that dn 6 cn

that

u(cn)− u(dn)

cn − dn
> u′(cn)

15



hence by inequality (3), for sufficiently large n,

cn − dn 6 u(cn)− u(dn)

u′(cn)
6 −Ku(cn)

u′(cn)

By l’Hopital’s rule, since lim
x→−∞

u(x) = −∞ and lim
x→−∞

u′(x) = ∞, lim
x→−∞

−
u′(x)
u(x)

= lim
x→−∞

− u′′(x)
u′(x)

= a > 0. By Lemma 4, lim
n→∞

cn = −∞, hence for a

sufficiently large n,

−Ku(cn)

u′(cn)
6
K + 1

a
=⇒ 0 6

cn

n
− dn

n
6
K + 1

an
−→
n→∞

0

It thus follows that lim
n→∞

dn

n
= lim

n→∞
cn

n
.

Denote this common limit ĉ. By Lemma 5, ĉ is the certainty equivalent of
X under v, where v(x) = x if a = 0, and v(x) = −e−ax if a > 0. Consider Y
dominated by X by strict FOSD, and let b̂ < ĉ be the certainty equivalent of
Y under v. Let bn be the certainty equivalent of Y n under u. By Lemma 5,
lim
n→∞

bn

n
= b̂, hence lim

n→∞
bn

n
< lim

n→∞
dn

n
. It thus follows that for sufficiently large

n, dn > bn, hence Ln � Y n. �

Proof of Theorem 2: Assume wlg that u(0) = 0, u′(0) = 1, that n0 = 1,
and hence cn > 0 for all n. Assume first that lim

x→−∞
u′(x) = ∞. Define

un(x) = u(x) − u(nxm) and note that un(nxm) = 0 and un(x) < 0, for all
outcomes of Xn. These inequalities and the boundedness assumption imply
that for the CEUn

un , the CEUn functional with respect to un,

un(dn) = CEUn
un(Ln) =

∫
un(z) dgn(FXn(z))

> K

∫
un(z) dFXn(z) > Kun(cn)

The inequality un(cn) > un(0) yields un(dn) > Kun(0).
Going back to u, noting that 1−K 6 0 and that, by concavity, u(nxm) 6

nu(xm),

u(dn) = un(dn) + u(nxm) > Kun(0) + u(nxm)

= −Ku(nxm) + u(nxm) = (1−K)u(nxm)

> n(1−K)u(xm)
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Denote A = (1−K)u(xm). By assumption, A 6 0. Note that the concavity
of u and lim

x→−∞
u′(x) = ∞ imply lim

y→−∞
u−1(y)/y = 0. Then, dn > u−1(nA)

implies lim
n→∞

dn

n
> lim

n→∞

(
u−1(nA)
nA

)
A = 0.

Finally, if lim
x→−∞

u′(x) = H < ∞, then proceed as in case (i) in the proof

of Theorem 1. Note that since E(X) > 0, Lemma 2 implies
∫
x60

x dFXn(x) >
x1σ2

n2(α−1) − nα for sufficiently large n.
Similarly to the last paragraph in the proof of Theorem 1, replacing X

with 0 implies that for a sufficiently large n, Ln � Y n. �

Proof of Proposition 1: Assume wlg that u(x) < 0 for all x and that
lim
x→∞

u(x) = 0. Then

u(dn) = CEUn(Ln) =

∫
u(z) dgn(FXn(z)) > K

∫
u(z) d(FXn(z)) > Ku(cn)

Since Xn � nε for a sufficiently large n, we have cn > nε. As nε goes to
infinity, lim

n→∞
u(cn) = 0 and, by the above argument, lim

n→∞
u(dn) = 0. This

implies the existence of n∗ such that for all n > n∗, u(dn) > u(0). For these
n, dn > 0 and Ln � 0. �

Proof of Proposition 2: The case of linear u with zero expected value is
covered by case (i) in the proof of Theorem 1 (note that, by construction,
cn = 0 for all n). Assume that the expected value is not zero. It follows from
eq. (1) that since the utility is linear, CEUn(L̃+ η) = CEUn(L̃) + η for all L̃.
Denote X̂ = X − E(X) and L̂ = L− E(X), and let d̂n ∼ L̂n. By the above,

E(L̂) = 0 implies lim
n→∞

d̂n

n
= 0. hence

dn = CEUn(Ln) = CEUn((L̂+ E(X))n)

= CEUn(L̂n + nE(X)) = CEUn(L̂n) + nE(X) = d̂n + nE(X)

implies lim
n→∞

dn

n
= E(X). Clearly, cn

n
= nE(X)

n
= E(X) as well.

Let u(x) = −e−ax with a > 0. By Lemma 1, cn = nc1 and hence lim
n→∞

cn

n
=

c1. By the definitions of c1 and dn we have

EU(X − c1) =

∫
−e−az dFX−c1(z) =

∫
−e−a(z−c1) dFX(z)

= eac
1

∫
−e−az dFX(z) = eac

1

(−e−ac1) = −1

(4)
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and

CEUn
((
L− dn

n

)n)
=

∫
−e−az dgn

(
F(X− dnn )

n(z)
)

=∫
−e−az dgn(FXn−dn(z)) =

∫
−e−a(z−dn) dgn (FXn(z)) =

ead
n

∫
−e−az dgn (FXn(z)) = ead

n (−e−adn) = −1

(5)

The sequence
{
dn

n

}∞
n=1

is bounded (since the support of X is) and assume,
by way of negation, that the sequence does not converge to c1. Then, wlg
there exists ε > 0 and a subsequence {d

nj

nj
}∞j=1 satisfying lim

j→∞
dnj

nj
< c1 − ε.

Without loss of generality, assume that for all j, dnj

nj
< c1 − ε. Hence,

CEUn
((
L− dnj

nj

)nj)
=

∫
−e−az dgn

(
F(X−dnj /nj)nj (z)

)
>

∫
−e−az dgn

(
F(X−c1+ε)nj

)
(z) > −K

∫
e−az dF(X−c1+ε)nj (z)

= −K
[∫

e−az dFX−c1+ε(z)

]nj
= −Ke−anjε

[∫
e−az dFX−c1(z)

]nj
= −Ke−anjε −→

j→∞
0

where the last equality follows by eq. (4). Therefore, for sufficiently large j,

CEUn
((
L− dnj

nj

)nj)
> −1

in contradiction with eq. (5). To conclude, here too lim
n→∞

dn

n
= c1 = lim

n→∞
cn

n
.

We now continue as in the last paragraph in the proof of Theorem 1,
noting that here u = v, hence Y ≺ X implies b̂ < ĉ. �

Example 2 Boundedness is not necessary for our results. Let u(x) = −e−x
and let νn(E) = 1−

√
1− P n(E). These capacities do not satisfy the bound-

edness assumption. To see why, let En′ = {(G, . . . , G)} and let En = ¬En′.
We obtain

νn(En ∪ En′)− νn(En) = 1−

(
1−

√
1− 2n − 1

2n

)
=

1√
2n

18



The ratio between this difference and 2−n, the probability of En′, is
√

2n,
which is not bounded by any K.

For Theorem 1, consider the ambiguous act L = (−0.5, E1; 0.5, E2) with
the anchor lottery X = (−0.5, 1

2
; 0.5, 1

2
). Let Y = (−0.55, 1

2
; 0.45, 1

2
). The

certainty equivalent of Y n is −0.17n and that of Ln is −0.21n.
For the other results, consider the act L = (−.35, E1; 0.65, E2) with the

anchor lottery X = (−0.35, 1
2
; 0.65, 1

2
) and let Y = (−0.02, 1). The certainty

equivalent of Xn is 0.03n, while that of Y n is −0.02n > −0.06n, which is
larger than the certainty equivalent of Ln.

Example 3 The boundedness of u from above is required for Proposition 1.
Let X = (−1

4
, 1

2
; 3

4
, 1

2
). Define νn as in example 1. We get

EU(X4n) =
3n∑

i=−n

(
4n

i+ n

)
1

24n
u(i) (6)

CEUn(L4n) = 2
n−1∑
i=−n

(
4n

i+ n

)
1

24n
u(i) +

(
4n

2n

)
1

24n
u(n) (7)

Let u(x) = x for x > 0. We define u(−n) inductively. Let

vn = −
−1∑

i=−n+1

(
4n

i+ n

)
u(i)−

n−1∑
i=1

(
4n

i+ n

)
i−
(

4n

2n

)
n

2
(8)

wn = 2u(−n+ 1)− u(−n+ 2)

and define u for x < 0 as follows. For n = 1, . . . , let u(−n) = min{vn, wn},
and for x ∈ (−n,−n + 1) let u(x) = u(−n) + (x + n)[u(−n + 1) − u(−n)].
The function u is strictly increasing and weakly concave.

Claim 1 lim
n→∞

u(−n)/n = −∞.

Proof : Suppose not. Then there exists A > 0 such that for all n, −u(−n)/n
6 A, and since between −n and −n + 1 the function u is linear, it follows
that for all n, −u(−n)/n 6 A.
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By definition, u(−n) 6 vn, hence it follows by eqs. (7) and (8) that for
all n, CEUn(X4n) 6 0. On the other hand, by eq. (7),

CEUn(X4n) = 2
−1∑
i=−n

(
4n

i+ n

)
u(i)

24n
+ 2

n−1∑
i=1

(
4n

i+ n

)
i

24n
+

(
4n

2n

)
n

24n

> −(n− 1)nA

24n−1

(
4n

n− 1

)
+ 1×

[
1

2
− Pr(X4n 6 0)

]
(9)

Let βn = (n−1)nA
24n−1

(
4n
n−1

)
. Clearly

βn+1

βn
=

n(n+ 1)A24n−1
(

4n+4
n

)
(n− 1)nA24n+3

(
4n
n−1

)
=

(n+ 1)(4n+ 4)(4n+ 3)(4n+ 2)(4n+ 1)

16(n− 1)n(3n+ 4)(3n+ 3)(3n+ 2)
→ 44

16× 33
=

16

27

Hence lim
n→∞

βn = 0. Likewise, Pr(X4n 6 0) 6 n
24n

(
4n
n

)
→ 0, hence the expres-

sion of eq. (9) converges to 1
2
; a contradiction. �

Define n0 = 0, and let ni satisfy

1. u(−ni) = vni

2. For ni−1 < j < ni, u(−j) < vj

It follows by Claim 1 that {ni} is not a finite sequence, as otherwise the
function u would become linear from a certain point on to the left and will
never intersect the line Ax for sufficiently high A.

By definition, CEUn(X4ni) = 0 and d4ni = 0. It thus follows by eq. (6)
that

u(c4ni) = EU(X4ni) =

[(
4ni
2ni

)
ni
2

+

3ni∑
i=ni+1

(
4ni
i+ ni

)
i

]
1

24ni

>
ni
2
× Pr

(
X4ni > ni

)
=
ni
4

Since it is positive, u(c4ni) = c4ni , hence lim
i→∞

c4ni
4ni
> 1

16
while d4ni

4ni
≡ 0. �
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Proof of Theorem 3: The certainty equivalents are defined by u(cn) =
EUu(Xn) and φ(dn) = SMφu(Ln).8 By ambiguity aversion, φ is more concave
than u, hence SMφφ(Ln) 6 SMφu(Ln) 6 SMuu(Ln). Let d̄n be the certainty
equivalent of Ln under SMφφ and note that cn is the certainty equivalent of
SMuu (since SMuu(Ln) = EUu(Xn)). Hence d̄n 6 dn 6 cn for all n and

lim
n→∞

d̄n

n
6 lim

n→∞

dn

n
6 lim

n→∞

cn

n

Using SMφφ(Ln) = EUφ(Xn), Lemma 5 implies lim
n→∞

d̄n

n
= lim

n→∞
cn

n
. Hence,

lim
n→∞

dn

n
= lim

n→∞
cn

n
. The rest of the proof is similar to the last paragraph in the

proof of Theorem 1. �

Proof of Proposition 3: Ambiguity aversion implies that φ is more concave
than u, hence SMφu(Ln) > SMφφ(Ln) = EUφ(Xn).

Let vt(x) = −e−tx. Suppose first that u is linear. By assumption E(X) >

0 and lim
x→−∞

φ′′(x)
φ′(x)

= 0. By Lemma 6, lim
x→−∞

φ′′(x)
φ′(x)

= 0 implies that for every t

there exists y such that φ(x) > vt(x) for all x < y. Hence (see Nielsen [22,
Prop. 1]) for sufficiently large n, EUφ(Xn) > φ(0), implying that for all such
n, Ln � 0.

Next suppose that u(x) = −e−sx for some s. Then lim
x→−∞

− u′′(x)
u′(x)

=

lim
x→−∞

− φ′′(x)
φ′(x)

= s and, by assumption, EUu(Xn) > u(0) = −1. By continuity,

for t close to s, EUvt(X) > vt(0) = −1. Choose such t > s and note
(Lemmas 6) that there exists y such that φ(x) > vt(x) for all x < y. Wlg
assume y < 0 and φ(0) = 0. Then∫

x<0

φ(x) dFXn(x) =

∫
x<y

φ(x) dFXn(x) +

∫ 0

y

φ(x) dFXn(x)

>
∫
x<y

vt(x) dFXn(x) + φ(y) Pr(y 6 Xn < 0)

> EUvt(Xn) + φ(y) Pr(y 6 Xn < 0)

= −(EUvt(X))n + φ(y) Pr(y 6 Xn < 0) −→
n→∞

0

8The certainty equivalent of the smooth model is computed using φ since
SMφu(x, s1; . . . ;x, sn) = φ(x).
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where the limit is 0 because EUvt(X) ∈ (−1, 0) and lim
n→∞

Pr(y 6 Xn < 0) = 0.

As lim
n→∞

EUφ(Xn)x>0 = supx φ(x), we conclude that for sufficiently large n,

EUφ(Xn) > φ(0) and Ln � 0. �

Proof of Proposition 4: If the risk aversion of φ is bounded from below
by t and u is concave, then for every n, dnu 6 d̄n, where dnu is the certainty
equivalent of Ln under u and φ and d̄n is the certainty equivalent of Ln under
the functions ū(x) = x and φ∗(x) = −e−tx.

Denote zi = E(Xpi), Z = (z1, µ
1; ...; z`, µ

`) and note that

E(Z) =
∑̀
i=1

µiE(Xpi) = E
(∑`

i=1µ
iXpi

)
= E(X) = 0

If the decision maker is using φ∗ and ū, then

SMφ∗ū(L) =
∑̀
i=1

µi · φ∗◦ ū−1(EUū(Xpi)) =
∑̀
i=1

µiφ∗(E(Xpi))

=
∑̀
i=1

µiφ∗(zi) = EUφ∗(Z)

Also, it follows from eq. (2) that

SMφ∗ū(Ln) =
`n∑
j=1

µnj · φ∗◦ ū−1(EUū(Y n
j )) =

`n∑
j=1

µnj φ
∗[E(Y n

j )]

The expected value of Y n
j is the sum of the expected values of the sequence

of lotteries it represents. As there are in this sequence ji lotteries of type
Xpi , i = 1, . . . , `, the expected value of Y n

j is
∑`

i=1 jiE(Xpi). Hence

`n∑
j=1

µnj φ
∗[E(Y n

j )] =
`n∑
j=1

µnj φ
∗
[(∑`

i=1jiE(Xpi)
)]

=
`n∑
j=1

µnj φ
∗
[(∑`

i=1jizi

)]
= EUφ∗(Zn)
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Where the last equation follows by the fact that
∑`

i=1 jizi is an outcome of
the lottery Zn which is obtained from playing n times lottery Z. We obtain
that

d̄n = (φ∗)−1(SMφ∗ū(Ln)) = (φ∗)−1(EUφ∗(Zn))

And since φ∗ is exponential, Lemma 1 implies d̄n

n
= d̄1 = (φ∗)−1(EUφ∗(Z)) <

0.
Consider the utility function vs(x) = −e−sx. Since this function repre-

sents constant absolute risk aversion, it follows that for this function, the
average certainty equivalent of Xn, c̄n

n
, equals the certainty equivalent of X,

c̄1. As in the proof of Lemma 5 case (ii), as s→ 0, c̄1 → 0 as well.
If u is less risk averse than vs, then lim

n→∞
cnu
n

computed with respect to u will

be at least as high as that of vs. By the first part of the proof lim
n→∞

dnu
n
6 d̄1 < 0.

For sufficiently small s we can get c̄1 as close as we wish to zero, and in
particular, for small s, lim

n→∞
dnu
n
6 lim

n→∞
d̄n

n
= d̄1 < c̄1 = lim

n→∞
c̄n

n
6 lim

n→∞
cnu
n

. Let

s∗ > 0 be such a value of s and denote v∗ = vs
∗
.

Let N = {Y : EUv∗(Y ) > v∗(d̄1)}. Clearly, X is in the interior of N . Let
Y ∈ N . Let bnu be the certainty equivalent of Y n under the utility function

u. Since v∗ is exponential, lim
n→∞

bn
v∗
n

= v∗−1(EUv∗(Y )) > d̄1.

Choose now u which is less risk averse than v∗. Then for every n, bnu > bnv∗ ,

hence lim
n→∞

bnu
n
> lim

n→∞

bn
v∗
n
> d̄1 > lim

n→∞
dnu
n

. Therefore for every such u there is a

sufficiently large n such that under this u, Y n � Ln. �

Proof of Proposition 5: By construction,

u(c1) = EUu(X) = EUu

(∑̀
i=1

µiXpi

)
=
∑̀
i=1

µiEUu(Xpi)

and

(φ ◦ u−1)(u(d1)) = φ(d1) =
∑̀
i=1

µi(φ ◦ u−1)(EUu(Xpi))

Rewriting the equations and denoting h = φ ◦ u−1 yields

u(c1) =
∑̀
i=1

µiEUu(Xpi) and h(u(d1)) =
∑̀
i=1

µih(EUu(Xpi))
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Assume first that φ is exponential of the form φ(x) = −e−tx. If u is linear,
then the proof of the first part of Proposition 4 implies dn

n
= d1 < 0 = cn

n
.

Next, consider exponential u(x) = −e−sx where, by assumption, s > 0. Since
t > s, h(y) = −(−y)t/s is strictly concave and increasing. Then, the above
equations imply u(d1) < u(c1) and d1 < c1.

By Lemma 1, c
n

n
= c1 for all n and hence lim

n→∞
cn

n
= c1. Moreover, denoting

ci = u−1(EUu(Xpi)) and using Lemma 1, for any sequence of lotteries Y n
u =

(Xp1)
n1
, . . . , (Xp`)

n` , ni ∈ {0,N},

EUu((Xp1)
n1

. . . (Xp`)
n`) = −|EUu(Xp1) |n

1 × . . .× |EUu(Xp`) |n
`

=

−
(
e−sc1

)n1

× . . .×
(
e−sc`

)n`
= −e−s(n1c1+...+n`c`) = u(n1c1 + . . .+ n`c`)

Therefore, denoting C = (c1, µ
1; ...; c`, µ

`), SMφu(Ln) can be written as EUφ(Cn)
for all n:

SMφu(L) =
∑̀
i=1

µiφ[u−1(EUu(Xpi))] =
∑̀
i=1

µiφ(ci) = EUφ(C)

and

SMφu(Ln) =

(`)n∑
j=1

µnj φ[u−1(EUu(Y n
j ))] =

(`)n∑
j=1

µnj φ[n1c1 + . . .+ n`c`] = EUφ(Cn)

Using d1 = φ−1(EUφ(C)) and dn = φ−1(EUφ(Cn)), Lemma 1 implies
dn

n
= d1 for all n and hence lim

n→∞
dn

n
= d1 and lim

n→∞
dn

n
< lim

n→∞
cn

n
.

Finally, if φ is not exponential, then repeat the above analysis for the less
concave function φ̄(x) = −e−tx where t > s. The last inequality then follows
from the fact that for all n, the certainty equivalent of Ln under SMφu is
(weakly) smaller than that under SMφ̄u. The claim of the proposition follows
similarly to the last two paragraphs of the proof of Proposition 4. �

Proof of Theorem 4: Consider first the case lim
x→−∞

u′′(x)
u′(x)

=∞. Let ĉ (s) be

the certainty equivalent of X under the utility function −e−sx, for all s > 0.
Since there exists M such that on (−∞,M), u is more concave than −e−sx,
and since lim

n→∞
cn

n
does not depend on the values of u on [M,∞) (Conclu-

sion 1), we have lim
n→∞

cn

n
6 ĉ (s) for all s. Next we show that lim

s→∞
ĉ (s) = x1
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(note that ĉ (s) = −1
s

ln (
∑
pie
−sxi)). Using l’Hopital’s rule we get

lim
s→∞

ĉ (s) = lim
s→∞

∑
pixie

−sxi∑
pie−sxi

= lim
s→∞

p1x1 +
∑

i>1 pixie
−s(xi−x1)

p1 +
∑

i>1 pie
−s(xi−x1)

= x1

which, noting that cn > nx1 and hence cn

n
> x1, implies lim

n→∞
cn

n
= x1. Simi-

larly, for Y = X−ε, the certainty equivalent bn of Y n satisfies lim
n→∞

bn

n
= x1−ε.

Now dn > nx1 implies lim
n→∞

bn

n
= x1−ε < x1 6 lim

n→∞
dn

n
, hence for a sufficiently

large n, Ln � Y n.
Next, consider the case lim

x→−∞
u′′(x)
u′(x)

= a ∈ (0,∞). By Lemma 5 case

(iii), lim
n→∞

cn

n
= ĉ where ĉ is the certainty equivalent of X under the utility

v(x) = −e−ax. Let q̂ ∈ Q be a probability vector such that X strictly
FOSD dominates Xq̂ and let d̂ denote the certainty equivalent of Xq̂ under

v. Clearly, d̂ < ĉ. Define d̂n = u−1(EU
(
Xn
q̂

)
) and observe that, by Lemma 5

case (iii), lim
n→∞

d̂n

n
= d̂. Since, by construction, dn 6 d̂n, we get lim

n→∞
dn

n
6 d̂.

Now let ε such that the certainty equivalent of X − ε under v is d̂. Let
Y = X − ε′ where ε′ < ε. Again by Lemma 5 case (iii), bn, the certainty
equivalent of Y n, satisfies lim

n→∞
bn

n
> d̂. Therefore, for a sufficiently large n,

Y n � Ln.
The case lim

x→−∞
u′′(x)
u′(x)

= 0 is similarly proved (by replacing the exponential

function v with a linear function). �

Proof of Proposition 6: By definition, Xn
q̃ � Ln. As E(Xn

q̃ ) < 0, it follows
by risk aversion that 0 � Xn

q̃ � Ln. �

Appendix B: Expected Utility

Except for in Lemmas 1 and 2, which apply to all lotteries X, we assume
throughout that E(X) 6 0. In Lemmas 3–6 we assume wlg that the value of
all utility functions is zero at zero and that their derivative there is 1.

Lemma 1 Let u(x) = −e−ax. Then for lotteriesX1, . . . , Xk, EU(
∑k

i=1Xi) =

u(
∑k

i=1 CE(Xi)), where CE(X) is the certainty equivalent of X. In particu-
lar, if Xi = X for all i, then for all n, cn

n
= c1.
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Proof: The proof follows from a property of the moment generating functions
(see Bulmer [1]). �

Lemma 2 There exists n0 such that for all n > n0,
∫
z60

z dFXn(z) > x1σ2

n2(α−1)−
nα + nE(X)

Proof: As σ2 be the variance of X, nσ2 is the variance of Xn. Choose
1
2
< α < 1. By Chebyshev’s inequality,

Pr(Xn < nE(X)− nα) 6
nσ2

n2α
=

σ2

n2α−1

There exists n0 sufficiently large such that for all n > n0, nx1 < nE(X)−nα.
Then ∫

z60

z dFXn(z) > nx1 ×
σ2

n2α−1
+ [nE(X)− nα]× 1

=
x1σ

2

n2(α−1)
+ nE(X)− nα �

Lemma 3 If lim
x→−∞

u′(x) =∞, then

lim
n→∞

∫
x>0

u(x) dFXn(x)

/∫
x<0

u(x) dFXn(x) = 0

Proof : Let y(µ) = sup{y 6 0 : u(y) < µy}. Since lim
x→−∞

u′(x) =∞, it

follows that y(µ) is finite. By the Central Limit Theorem, as n → ∞, the
probability that Xn will be in any finite segment goes to 0. In particular,
lim
n→∞

Pr(Xn ∈ [y(µ), 0]) = 0.

Since for positive x, u′(x) 6 1, it follows that for such x, u(x) 6 x. And
since for x < 0, u(x) < 0, we obtain∫

x>0

u(x) dFXn(x)∫
x<0

u(x) dFXn(x)
>

∫
x>0

x dFXn(x)∫
x<0

u(x) dFXn(x)

Since E(Xn) 6 0, it follows that
∫
x>0

x dFXn(x) 6 −
∫
x<0

x dFXn(x). There-
fore
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∫
x>0

x dFXn(x)∫
x<0

u(x) dFXn(x)
>

−
∫ 0

y(µ)

x dFXn(x)−
∫
x<y(µ)

x dFXn(x)∫ 0

y(µ)

u(x) dFXn(x) +

∫
x<y(µ)

u(x) dFXn(x)

>

−
∫ 0

y(µ)

x dFXn(x)−
∫
x<y(µ)

x dFXn(x)∫ 0

y(µ)

u(x) dFXn(x) + µ×
∫
x<y(µ)

x dFXn(x)

−→
n→∞

− 1

µ

This is true for every µ > 1, hence the claim. �

Conclusion 1 If lim
x→−∞

u′(x) = ∞, and if for all x < M , u(x) = v(x), then

lim
n→∞

cnu
n

= lim
n→∞

cnv
n

.

Proof : For M > 0, the fact follows from Lemma 3. For M < 0, it follows
by Lemma 3 and by the Central Limit Theorem (observe that lim

n→∞
Pr(Xn ∈

[M, 0]) = 0). �

Lemma 4 If lim
x→−∞

u′(x) =∞, then lim
n→∞

cn = −∞.

Proof : By risk aversion, cn 6 E(Xn) = nE(X). Therefore, if E(X) <
0, we are through. If E(X) = 0, we show that for every integer m < 0,
lim
n→∞

EU(Xn) 6 u(m− 1). The value of EU(Xn) equals

∫
x62(m−1)

u(x) dFXn(x)

1 +

0∫
2(m−1)

u(x) dFXn(x)∫
x62(m−1)

u(x) dFXn(x)
+

∫
x>0

u(x) dFXn(x)∫
x62(m−1)

u(x) dFXn(x)


As in the proof of Lemma 3, it follows by the central limit theorem that
lim
n→∞

∫ 0

2(m−1)
u(x) dFXn(x) = 0 and

lim
n→∞

∫
x>0

u(x) dFXn(x)∫
x62(m−1)

u(x) dFXn(x)
= lim

n→∞

∫
x>0

u(x) dFXn(x)∫
x60

u(x) dFXn(x)
= 0
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where the last equality follows by Lemma 3. By the Central Limit Theorem,
the probability of receiving a negative outcome is 1

2
. It thus follows that

lim
n→∞

cn = lim
n→∞

∫
u(x) dFXn(x)

= lim
n→∞

∫
x62(m−1)

u(x) dFXn(x) 6
u(2(m− 1))

2
6 u(m− 1)

Hence lim
n→∞

cn 6 m− 1 < m. �

Lemma 5 Let lim
x→−∞

− u′′(x)
u′(x)

= a ∈ [0,∞). Let v(x) = x if a = 0, and

v(x) = −e−ax if a > 0. Also, let ĉ be the certainty equivalent of X under v.
Then lim

n→∞
cn

n
= ĉ.

Proof: We consider three cases.

(i) a = 0 and lim
x→−∞

u′(x) = H < ∞: Note first that in this case, ĉ = E(X).

Since for all n, cn 6 E(Xn) = nE(X), it is enough to prove that lim
n→∞

cn

n
>

E(X). Define w(x) = min{Hx, 0}. By assumption, u(x) > w(x) for all x.
Let EUw denote the EU functional with respect to w. Then by Lemma 2
and for sufficiently large n,

u(cn) = EU(Xn) > EUw(Xn) = H

∫
z60

z dFXn(z)

> H

(
x1σ

2

n2(α−1)
− nα + nE(X)

)
And, since u is concave and u′(0) = 1, cn > H( x1σ2

n2(α−1) − nα + nE(X)), hence

lim
n→∞

cn

n
> H lim

n→∞

(
x1σ

2

n2α−1
− 1

n1−α

)
+HE(X) = HE(X)

If E(X) = 0, we are through. If E(X) < 0, then lim
n→∞

cn = −∞ and, as by

l’Hopital’s rule lim
x→−∞

x
u(x)

= lim
x→−∞

1
u′(x)

= 1
H

, we obtain that lim
n→∞

cn

u(cn)
= 1

H
.
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Hence,

lim
n→∞

cn

n
= lim

n→∞

cn

u(cn)

u(cn)

n
=

1

H
lim
n→∞

u(cn)

n

>
1

H
lim
n→∞

H

n

(
x1σ

2

n2(α−1)
− nα + nE(X)

)
= lim

n→∞

(
x1σ

2

n2α−1
− 1

n1−α

)
+ E(X) = E(X)

(ii) a = 0 and lim
x→−∞

u′(x) =∞: Note that here too, ĉ = E(X). Consider the

exponential utility vε(x) = −e−εx for which −v′′ε/v′ε ≡ ε. Denote by cnε the
value of cn obtained for the function vε. By Lemma 1, lim

n→∞
cnε/n = c1

ε < 0

where c1
ε, the certainty equivalent X, satisfies

−e−εc1ε =

∫
−e−εz dFX(z) =⇒ c1

ε = −1

ε
ln

[∫
e−εz dFX(z)

]
Using l’Hopital’s rule we obtain

lim
ε→0

c1
ε = lim

ε→0

∫
ze−εz dFX(z)∫
e−εz dFX(z)

= E(X)

As lim
x→−∞

u′′(x)/u′(x) = 0, it follows that for every ε > 0 there is x(ε) such

that for all x < x(ε), −u′′(x)/u′(x) < ε. Define a function uε as follows.

uε =

{
u(x) x 6 x(ε)

avε(x) + b x > x(ε)

where a = u′(x(ε))
v′ε(x(ε))

and b = u(x(ε)) − avε(x(ε)). Clearly uε is less risk averse

than vε, hence cnuε > cnε . By Conclusion 1, lim
n→∞

cnuε/n = lim
n→∞

cn/n. We saw

that lim
n→∞

cnε/n = c1
ε, hence lim

n→∞
cn/n > c1

ε. The claim now follows by the fact

that lim
ε→0

c1
ε = E(X).

(iii) a > 0: Note that in this case, lim
x→−∞

u′(x) = ∞. To see it, note that

lim
x→−∞

u′(x) = H < ∞ must imply lim
x→−∞

u′′(x) = 0 (by concavity, u′(x) is
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monotonically increasing towards H when x→ −∞) and hence lim
x→−∞

u′′(x)
u′(x)

=

0, contradicting a > 0.
For any ε > 0 denote vε+(x) = −e−(a+ε)x, vε−(x) = −e−(a−ε)x and let ĉε+

and ĉε− satisfy

−e−aĉε+ =

∫
−e−(a+ε)z dFX(z), −e−aĉε− =

∫
−e−(a−ε)z dFX(z)

Since vε+ is more concave than v and v is more concave than vε− , we have
ĉε+ < ĉ < ĉε− . Let ĉnε+ and ĉnε− denote the certainty equivalents of Xn under

vε+ and vε− , respectively. By Lemma 1, lim
n→∞

ĉnε+
n

= ĉε+ and lim
n→∞

ĉnε−
n

= ĉε− .

As lim
x→−∞

u′′(x)
u′(x)

= a > 0, for every a > ε > 0 there is x(ε) such that for all

x 6 x(ε), a− ε < u′′(x)
u′(x)

< a+ ε. Define the functions uε∗ , ∗ = +,−, by

uε∗ (x) =

{
u(x) x 6 x(ε)

α∗vε∗ (x) + β∗ otherwise

where α∗ = u′(x(ε))
vε∗(x(ε))

and β∗ = u(x(ε)) − α∗vε∗ (x(ε)) are defined as to enable

continuity and differentiability of these functions.
Clearly, uε− is more risk averse than vε− and uε+ is less risk averse than

vε+ . Hence, cnuε+
and cnuε−

, the certainty equivalents of Xn under uε+ and

uε− , respectively, satisfy ĉnε− > cnuε−
and cnuε+

> ĉnε+ . Hence,

ĉε− = lim
n→∞

ĉnε−
n
> lim

n→∞

cnuε−
n

= lim
n→∞

cn

n
= lim

n→∞

cnuε+
n
> lim

n→∞

ĉnε+
n

= ĉε+

where the second and third equalities follow from Conclusion 1. Finally, note
that both ĉε+ and ĉε− converge to ĉ when ε→ 0. �

Lemma 6 Suppose that lim
x→−∞

− u′′(x)
u′(x)

= s∗ < t∗ 6 lim
x→−∞

− v′′(x)
v′(x)

. There is

x∗ such that for all x < x∗, u(x) > v(x).

Proof: Let s, t such that s∗ < s < t < t∗ and assume wlg that for all x < 0,
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−u′′(x)
u′(x)

< s < t < −v′′(x)
v′(x)

. Then

ln(u′(0))− ln(u′(x)) 6 sx and ln(v′(0))− ln(v′(x)) > tx =⇒

ln(u′(x)) > ln(u′(0))− sx and ln(v′(x)) 6 ln(v′(0))− tx =⇒

u′(x) > u′(0)e−sx and v′(x) 6 v′(0)e−tx =⇒

u(x) > u(0)− u′(0)e−sx and v(x) 6 v(0)− v′(0)e−tx =⇒

u(x)− v(x) > u(0)− v(0)− [u′(0)e−sx − v′(0)e−tx]

As x→ −∞, the rhs converges to ∞, hence the claim. �
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