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Abstract

This paper shows that in some axioms regarding the mixture of
random variables, the requirement that the conclusions hold for all
values of the mixture parameter can be replaced by requiring the exis-
tence of only one non-trivial value of the parameter, which needs not
be fixed. This is the case for the independence, betweenness, and the
mixture symmetry axioms.
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1 Introduction

Typical mixture axioms for preferences over random variables state that “For
all random variables and for all values of a mixing parameter, if some prefer-
ences hold, then other preferences hold as well.” For example, the between-
ness axiom (Chew [1], Dekel [3]) states that for all random variables F and
G and for all α ∈ [0, 1], if F ∼ G then F ∼ αF + (1 − α)G. Obviously,
it is very easy to refute the behavioral validity of such axioms — all one
needs is one value of the parameter for which they are violated.1 But what
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happens if “for all values of a mixing parameter” is replaced with “for some
values,” or even with “there exists a value?” The first result of this paper
shows that with the standard assumptions of completeness, transitivity, and
continuity, the independence and the betweenness axioms are satisfied for all
α if for each set of relevant distributions there is one non-trivial α for which
these axioms are satisfied. The bulk of the paper is devoted to the proof of
a similar result for the mixture symmetry axiom.

Quadratic utility, one of the early alternatives to expected utility theory,
was suggested by Machina [7, fn. 45]. It was axiomatized by Chew, Epstein,
and Segal [2] (henceforth CES) and was extended to social choice theory by
Epstein and Segal [4]. The key axiom in CES is strong mixture symmetry: If
F ∼ G, then for all α ∈ [0, 1], αF+(1−α)G ∼ (1−α)F+αG. If the decision
maker is indifferent between F and G and decides which of them to play by
flipping a biased coin, then indifference follows between the option of playing
F if Heads, G if Tails, and the option of playing G is Heads, F if Tails.
Moreover, this holds for any biased coin. Theorem 4 in CES states that if,
in addition, preferences are either quasi-concave or quasi-convex, then they
can be represented by a quadratic functional. The current paper replaces
both requirements with weaker axioms. Instead of quasi-concavity (or quasi-
convexity) I require only that preferences along chords have a single extreme,
and the “for all α” in the strong mixture symmetry axiom is replaced with
“there exists α.” Moreover, this α may vary from one pair of lotteries to
another. It turns out that these weaker assumptions still imply the quadratic
representation.

The claims of this paper show that instead of assuming betweenness, in-
dependence, or mixture symmetry for all values of α, it is enough to assume
the existence of such a value. Obviously, such axioms can never be directly
contradicted by experimental methods. The theories predicted by these ax-
ioms can be checked in experiments, but in order to obtain these theories
more axioms are needed, usually completeness, transitivity, and continuity.
As many suspect, it may well be that these three axioms (and especially the
first two) are violated by most of the experimental results.
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2 Betweenness and Independence

Let F be the set of distributions over [0, a], a ∈ (0,∞]. Consider a complete
and transitive preference relation �, satisfying continuity and monotonicity
with respect to first-order stochastic dominance, and let V : F → ℜ represent
it. For F,G ∈ F , let [F,G] = {αF + (1 − α)G : α ∈ [0, 1]} and (F,G) =
{αF + (1 − α)G : α ∈ (0, 1)}. For F 6= G, the line through F and G is the
set L

F,G
= {H : F ∈ [H,G] or G ∈ [H,F ]}.

I/WI: Independence/Weak Independence For all F,G,H ∈ F , if F ∼
G then for all [for at least one value of] α ∈ (0, 1), αF + (1 − α)H ∼
αG+ (1− α)H.

B/WB: Betweenness/Weak Betweenness For all F,G ∈ F , if F ∼ G

then for all [for at least one value of] α ∈ (0, 1), αF + (1− α)G ∼ F .

It is of course well known that the requirement “for all” in these two
axioms can be replaced with “for α = 1

2
,” or in fact, for any fixed value of α

(see Herstein and Milnor [6]). The weak versions discussed here only require
the existence of one value of α, but this value may depend on the underlying
distributions.

Theorem 1. Assuming continuity, WB implies B and WI implies I.

Proof : WB implies B: Using a method introduced by Hardy, Littlewood,
and Pòlya [5, Observation 88 in §3.7],2 suppose that there are F,G and α0

such that α0F+(1−α0)G ≁ F . Let α∗ = supα{α < α0 : αF+(1−α)G ∼ F}
and α∗ = infα{α > α0 : αF + (1 − α)G ∼ F}. By continuity, F ∗ :=
α∗F + (1 − α∗)G ∼ F∗ := α∗F + (1 − α∗)G ∼ F , hence by WB there is
α ∈ (0, 1) such that βF ∗ + (1− β)F∗ ∼ F ∗ ∼ F , a contradiction.

WI implies I: Let H = G in the definition of WI to obtain that it implies
WB, hence B. Let F ∼ G and consider their mixtures with an arbitrary
H. If F ∼ H ∼ G, then by B, for all α ∈ (0, 1), αF + (1 − α)H ∼ H ∼
αG + (1 − α)H. Suppose wlg that F ∼ G ≻ H. Again by B, for all α and
D = F,G, D � αF + (1 − α)H � H. Otherwise, if for example, for some
α′ ∈ (0, 1), F ′ := α′F+(1−α′)G ≻ F , then by continuity there is α′′ ∈ (0, α′)

2I am grateful to Peter Wakker for this reference.
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such that F ′′ := α′′F + (1− α′′)G ∼ F , a violation of B, as F ′ ∈ [F, F ′′]. It
follows therefore by continuity that for all α ∈ (0, 1) there is β ∈ (0, 1) such
that αF + (1− α)H ∼ βG+ (1− β)H.

Let F ∼ G ≻ H. By WI, there is an decreasing sequence αn such that
αnF + (1 − αn)H ∼ αnG + (1 − αn)H. Let ᾱ = lim

n→∞

αn (it exists as {αn}
is a decreasing and bounded sequence). By WI, there is α < ᾱ such that
αF + (1 − α)H ∼ αG + (1 − α)H. Choose therefore a sequence such that
ᾱ = 0.

Suppose now that for a certain α̃ ∈ (0, 1) there is β̃ ∈ (0, 1), β̃ 6= α̃, such
that F̃ := α̃F + (1 − α̃)H ∼ G̃ := β̃G + (1 − β̃)H. As before, there is a
sequence βn ↓ 0 such that for all n, βnF̃ +(1−βn)H ∼ βnG̃+(1−βn)H. By
construction, the line Ln through αnF +(1−αn)H and αnG+(1−αn)H and
L̃n through βnF̃ + (1− βn)H and βnG̃+ (1− βn)H are not parallel. Wlg, H
is in the interior of a probability triangle (see Machina [7]) containing also F

and G. Otherwise, let Hn → H where for every n, Hn is in the interior of the
triangle formed by F,G,H. The limit of the intersection points of Ln and
L̃n is H, therefore these intersection points are in the triangle, a violation of
transitivity, see Figure 1. �

F

G

H

Hn

Figure 1: Wide-dash: α-lines, dense-dash: β-lines

4



3 Mixture Symmetry

This section deals with some variants of the mixture symmetry axiom. The
first two are taken from Chew, Epstein, and Segal [2], who show in their
Theorem 1 that assuming continuity and monotonicity, they are equivalent.

MS: Mixture Symmetry For all F,G ∈ F , if F ∼ G then for all α ∈ (0, 1
2
)

there exists β ∈ (1
2
, 1) such that αF + (1− α)G ∼ βF + (1− β)G.

SMS: Strong Mixture Symmetry For all F,G ∈ F , if F ∼ G, then for
all α ∈ [0, 1], αF + (1− α)G ∼ (1− α)F + αG.

WMS: Weak Mixture Symmetry For every F,G ∈ F , if F ∼ G, then
there exists α ∈ (0, 1

2
) such that αF + (1− α)G ∼ (1− α)F + αG.

Note that in the definition of weak mixture symmetry, α may depend on
F and G. We get MS ⇐⇒ SMS=⇒WMS.

Quasi concavity and convexity of preferences play a crucial role in the
analysis of quadratic functions.

SP / SD: Single Peak / Deep on [F,G] Let F ∼ G, F 6= G. There is
β ∈ (0, 1) such that the preferences � over αF + (1− α)G are strictly
increasing [decreasing] in α on [0, β] and strictly decreasing [increasing]
in α on [β, 1].

SE: Single Extreme on [F,G] Let F ∼ G such that there is no α ∈ (0, 1)
for which F ∼ αF + (1− α)G. Then � is either SP or SD on [F,G].

SE: Single Extreme For every F ∼ G, � satisfies SE on [F,G].

SQC: Strict Quasi-Concavity For all F 6= G and α ∈ (0, 1), F � G

implies αF + (1− α)G ≻ G.

SQX: Strict Quasi-Convexity For all F 6= G and α ∈ (0, 1), F � G

implies F ≻ αF + (1− α)G.

NL: Non-Linearity For all F 6= G, F ∼ G, there is H ∈ [F,G] such that
F ≁ H.
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Clearly SQC implies SP and SQX implies SD on [F,G] for all F and
G and both SP and SD, and hence SE, imply NL.3 However, neither SQC
nor SQX is implied by SE. For example, let � on ℜ2

+ be represented by

V (p, q) =







2p+q+
√

4pq−3q2

4
q 6 p

p2+q2

2q
q > p

(see Figure 2).

p

q

Figure 2: SE and NL together do not imply SQC or SQX

Definition 1. A preference relation � is quadratic if can be represented by

V (F ) =

∫ ∫

ϕ(x, y)dF (x)dF (y)

For some continuous, monotonic, and symmetric function ϕ : ℜ2
+ → ℜ. For

finite lotteries (x1, p1; . . . ; xn, pn) this function becomes

V (x1, p1; . . . ; xn, pn) =
∑

i

∑

j

pipjϕ(xi, xj)

Theorem 2. Let the continuous preference relation � satisfy SE. Then the
following three conditions are equivalent.

3Although I never assume NL without assuming SE, it is sometimes illustrative to use
it directly.
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1. It satisfies WMS

2. It satisfies SMS

3. It can be represented by a quadratic function.

and in all three cases, it either satisfies SQC or it satisfies SQX.

The theorem is proved through a sequence of claims. The arguments
are presented in the interiors of probability triangles {pF̄ + qḠ + (1 − p −
q)δ0 : p, q > 0, p + q 6 1} where F̄ , Ḡ, and δ0 are not on the same line L.
By continuity, the claims apply to the boundaries of the triangles as well.
Observe that since the set of outcomes is (a subset of) ℜ+, monotonicity
with respect to first-order stochastic dominance implies that preferences are
increasing in p and q.

Claim 1. Assume SE. Let I be an indifference curve of � and let L be a line.
If |I ∩ L| > 3, then there exists an indifference curve I ′ and F ∗, G∗, H∗ ∈
I ′ ∩ L, such that (F ∗, G∗) ∩ I ′ and (G∗, H∗) ∩ I ′ are empty.

Proof : By NL there exists D ∈ L\I (see Figure 3). By the continuity of
�, there are G,H ∈ L ∩ I such that D ∈ (G,H) and (G,H) ∩ I = ∅ (see
the first part of the proof of Theorem 1 above). Wlg, G ≻ D and there
is F ∈ L ∩ I such that G ∈ (F,H). If (F,G) ∩ I = ∅, we are through,
and the three desired points are F,G,H. Otherwise, there is in (F,G) ∩ I a
sequence Gn → G. Assume that there exists F ′ ∈ (F,G) such that G ≻ F ′.
If not, that is, if for all F ′ ∈ (F,G), F ′ � G, then start over by choosing
D̄, Ḡ, H̄ ∈ (F,G) such that D̄ ∈ (Ḡ, H̄), Ḡ, H̄ ∈ I, D̄ ≻ Ḡ, and there exists
F ′ ∈ (F, Ḡ) such that F ′ ≻ Ḡ. The proof then continues with the opposite
preference signs.

Since all points in (G,H) are inferior toG, as is F ′, it follows by continuity
that there is an indifference curve I ′, sufficiently close to I, and three points
F̃ , G∗, H∗ ∈ I ′ such that [G∗, H∗] ⊂ (G,H) and F̃ ∈ (F,G). By SE on
[G,H], (G∗, H∗) ∩ I ′ = ∅ and for all F ′′ ∈ [G,G∗), G∗ ≻ F ′′. Moreover,
there is F ∗ ∈ [F̃ , G] such that F ∗ ∈ I ′ and (F ∗, G]∩I ′ = ∅. Otherwise, there
is a sequence F̃n → G such that for all n, F̃n+1 ∈ (F̃n, G)∩ I ′, a violation of
continuity, as G 6∈ I ′. It follows that F ∗ ∼ G∗, for all D′ ∈ (F ∗, G], F ∗ ≻ D′

and for all D′ ∈ [G,G∗) or in (G∗, H∗), G∗ ≻ D′, hence F ∗, G∗, H∗ satisfy
the requirements of the claim. �
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F
F ′

F̃
G

F ′′

G∗

D
H∗

H L

Figure 3: Distributions along L

Claim 3 below proves that the conclusion of Claim 1 contradicts our
assumptions, and therefore the “if” part of the last claim is empty.

Claim 2. Let F ∼ G. If � satisfies WMS and SE on [F,G], then for all
α ∈ [0, 1], αF + (1− α)G ∼ (1− α)F + αG.

Proof : Assume SP on [F,G] (the proof for SD is similar) and that F 6= G

(otherwise the claim is trivial). Let

ᾱ = sup
{

α ∈ (0, 1
2
) : αF + (1− α)G ∼ (1− α)F + αG

}

(1)

By continuity, F0 := ᾱF+(1−ᾱ)G ∼ G0 := (1−ᾱ)F+ᾱG. We want to show
that ᾱ = 1

2
. Suppose that ᾱ < 1

2
. Then by WMS there exists α ∈ (0, 1

2
)

such that

αF0 + (1− α)G0 ∼ (1− α)F0 + αG0 =⇒
α[ᾱF + (1− ᾱ)G] + (1− α)[(1− ᾱ)F + ᾱG] ∼

(1− α)[ᾱF + (1− ᾱ)G] + α[(1− ᾱ)F + ᾱG] =⇒
[αᾱ + (1− α)(1− ᾱ)]F + [α(1− ᾱ) + (1− α)ᾱ]G ∼

[(1− α)ᾱ + α(1− ᾱ)]F + [(1− α)(1− ᾱ) + αᾱ]G

Let α1 = αᾱ + (1 − α)(1 − ᾱ) and α2 = α(1 − ᾱ) + (1 − α)ᾱ and observe
that α2 = 1 − α1. Also, for α ∈ (0, 1), α1 > ᾱ iff ᾱ < 1

2
. Moreover, for

ᾱ, α ∈ (0, 1
2
), α1 is decreasing in α and ᾱ, and at α = ᾱ = 1

2
, α1 = 1

2
.
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We obtain that 1

2
> α1 > ᾱ, yet α1F + (1 − α1)G ∼ (1 − α1)F + α1G, in

contradiction to the definition of ᾱ (see eq. (1)). It thus follows that ᾱ = 1

2
.

Next we show that for all α 6= 1

2
, 1

2
F + 1

2
G ≻ αF + (1 − α)G. Suppose

not. Wlg, there is α < 1

2
such that αF + (1 − α)G � 1

2
F + 1

2
G, and since

� is SP on [F,G], there is α < 1

2
such that αF + (1 − α)G ≻ 1

2
F + 1

2
G. It

follows that � is decreasing in α on [β, 1] for some β < 1

2
, in contradiction

to the above conclusion that ᾱ = 1

2
. It thus follows that � is increasing in α

on [0, 1
2
] and decreasing on [1

2
, 1].

Let F1 = αF + (1− α)G for some α ∈ (0, 1
2
). By continuity and the last

conclusion there is α′ ∈ (1
2
, 1) such that F1 ∼ G1 := α′F + (1− α′)G. Since

� is SP on [F1, G1] it follows as above that
1

2
F1+

1

2
G1 ≻ αF1+(1−α)G1 for

all α ∈ [0, 1
2
)∪ (1

2
, 1]. But since 1

2
F + 1

2
G ∈ [F1, G1], it must be the midpoint

of this segment, hence α′ = α1. �

Claim 3. Assume WMS, and let G ∈ (F,H) such that F ∼ G ∼ H. If �
satisfies SE on [F,G], then it does not satisfy SE on [G,H].

Proof : Let G = α0F + (1 − α0)H, and suppose wlg that α0 6 1

2
and that

� satisfies SD on [G,H] (see Figure 4, where the indifference curve between
H and G is depicted by the solid curve, and its two possible continuations
to F are depicted by the dashed lines).

F

G

H L
[F,G]

(i)

(ii)

Figure 4: G = α0F + (1− α0)H, α0 6
1

2

(i) � satisfies SP on [F,G]: F ∼ H, hence by WMS there is α < 1

2
such

that αF + (1 − α)H ∼ (1 − α)F + αH. For α 6 α0, αF + (1 − α)H ≻
H ∼ F ≻ (1 − α)F + αH, therefore α0 < α < 1

2
. In that case, both

αF + (1 − α)H and (1 − α)F + αH are between F and G. By Claim 2,
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βF + (1 − β)G ∼ (1 − γ)F + γG iff β = γ. Let β ∈ (0, 1) such that
αF + (1− α)H = βF + (1− β)G, hence

αF + (1− α)H = βF + (1− β)[α0F + (1− α0)H] =

[β + (1− β)α0]F + (1− β)(1− α0)H =⇒

β =
α− α0

1− α0

(2)

On the other hand, by SP on [F,G], the only points in [F,G] to be indifferent
to αF +(1−α)H and βF +(1−β)G are (1−α)F +αH and (1−β)F +βG,
which must be the same. We get

(1− α)F + αH = (1− β)F + β[α0F + (1− α0)H] =

[(1− β + βα0]F + β(1− α0)H =⇒

β =
α

1− α0

(3)

Eqs. (2) and (3) imply α0 = 0, a contradiction, as G 6= H.

(ii) � satisfies SD on [F,G]: Here too, there is α < 1

2
such that αF + (1 −

α)H ∼ (1 − α)F + αH. If α > α0, a contradiction is created as above.
Otherwise, creating a sequence of points as in the proof of Claim 2, we
eventually get to points in [F,G] that are indifferent to each other but are not
in symmetrical position on this segment, a contradiction to the assumption
that � on [F,G] is SD. �

Claim 1 show that under SE, if an indifference curve I intersects line L

in more than two points, then there is an indifference curve I ′ that intersects
L at three points but not between them. Claim 3 shows that under WMS,
such I ′ does not exist.

Conclusion 1. Let � satisfy SE and WMS and let I be an indifference
curve of �. Then for any line L, |I ∩ L| 6 2.

Claim 4. If � satisfies WMS and SE, then it satisfies either SQC or SQX.

Proof : Suppose that there are two indifference curves I and I ′ with F,G ∈
I and F ′, G′ ∈ I ′ such that � is SP on [F,G] and SD on [F ′, G′]. By
continuity, I and I ′ can be assumed to be different indifference curves. Also
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by continuity, if such points exist then we can find such pairs that are not
all on the same line. Therefore we can assume wlg that [F, F ′]∩ [G,G′] = ∅,
otherwise [F,G′] ∩ [G,F ′] = ∅ and the roles of G and G′ are reversed. By
assumption, 1

2
F + 1

2
G ≻ F ∼ G while F ′ ∼ G′ ≻ 1

2
F ′ + 1

2
G′. By continuity,

for every α ∈ (0, 1) there exist βα ∈ (0, 1) such that αF + (1 − α)F ′ ∼
βαG+ (1− βα)G

′. By continuity, there is α such that

αF + (1− α)F ′ ∼ βαG+ (1− βα)G
′ ∼

1

2
(αF + (1− α)F ′) + 1

2
(βαG+ (1− βα)G

′)

Contradicting Conclusion 1 that a line can intersect an indifference curve at
no more than two points. �

Proof of Theorem 1 : Obviously, SMS implies WMS and since we assume
SE, by Claim 2 WMS implies SMS. By Claim 4, � is either QCV or QCX.
By [2, Theorem 4], if � is either quasi-concave or quasi-convex, then it can
be represented by a quadratic function iff it satisfies SMS. �
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