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Abstract

We analyze identification in dynamic econometric models of binary choice with fixed
e↵ects under general conditions. This class of models is often used in the literature to
distinguish between state dependence (invariably referred to in the recent literature as
switching costs, inertia or stickiness) and heterogeneity. We first characterize the sharp
set for parameters in a dynamic panel of binary choice under conditional stationarity.
The identified set can be characterized by a union of convex polyhedrons. We conduct
the same exercise under the stronger assumption of conditional exchangeability, and
establish its incremental identifying power. We extend our identification approach to
study models with more time periods as well. We also provide su�cient conditions
for point identification. For inference in cases with discrete regressors, we provide an
approach to constructing confidence sets for the identified sets using a linear program
that is simple to implement. The paper then provides simulation based evidence on the
size and shape of the identified sets in varying designs to illustrate the informational
content of di↵erent assumptions. We also illustrate the inference approach using a data
set on women’s labor supply decisions.
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1 Introduction

There has been recent renewed interest in empirical economics in estimating models of dis-

crete choice over time. This is partly motivated by empirical regularities: certain individuals

are more likely to stay with a choice if they have experienced that choice in the past and

this choice “stickiness” has been attributed variably in the literature to inertia or switching

costs. For example, Handel (2013) estimates a model of health insurance choice in a large

firm over time documenting inertia in choices overtime. Dubé, Hitsch, and Rossi (2010)

empirically find that this “inertia” in packaged goods markets is likely caused by brand loy-

alty. Polyakova (2016) studies the important question of quantifying the e↵ect of switching

costs in Medicare Part D markets and its relation to adversely selected plans1. The recent

availability of these panel data in such important markets on the one hand and the central

role that the dynamic discrete choice literature played in econometric theory on the other

provide the main motivation for this paper which is focused on the question of identification

in these models.

The dynamic discrete choice model has appeared prominently in econometrics. In fun-

damental work, Heckman (1981) discusses two di↵erent explanations for the empirical reg-

ularity that an individual is more likely to experience a state after having experienced it in

the past. The first explanation, termed state dependence, is a genuine behavioral response

to occupying the state in the past, i.e., a similar individual who did not experience the state

in the past is less likely to experience it now. The current literature sometimes refers to

state dependence as switching costs, inertia or stickiness and can be thought of as a causal

e↵ect of past occupancy of the state2. The second explanation advanced by Heckman is

heterogeneity, whereby individuals are di↵erent in unobservable ways and if these unobserv-

ables are correlated over time, this will lead to said regularity. This serial correlation in the

unobservables (or heterogeneity) is a competing explanation to state dependence and each of

these lead to a di↵erent policy prescriptions. Hence, the econometrics literature since then

has focused on models under which we are able to empirically identify state dependence

while allowing for serial correlation. These models di↵er in the kinds of assumptions used.

1See also Ketcham, Lucarelli, and Powers (2015) for work on quantifying switching costs in the presence of
many choices in Medicare. Other recent papers on switching costs and inertia include Raval and Rosenbaum
(2018) on hospital delivery choice and Illanes (2016) on switching costs in pension plan choices. Finally, see
Erdem, Imai, and Keane (2003) for a study on the importance of dynamics in discrete decision problems.

2See the recent work in Torgovitsky (2016) that provides characterization of this causal e↵ect under
minimal assumptions.
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Concretely, the binary dynamic panel data model relates a binary outcome in period t,

yt (we abstract from subscripting also by i) to its lagged value yt�1 in the following way

yt = I{ut  x0
t� + �yt�1 + ↵} t = 1, 2, ...T

where � is meant to measure the e↵ect of state dependence (also switching costs or inertia).

This parameter � is treated as a fixed (but unknown) constant while the unobservables here

take the standard form ut �↵ where ↵ is an individual specific and time independent and is

meant to capture the systematic correlation of the unobservables over time3. A fixed e↵ect

treats ↵ as possibly arbitrarily correlated with the regressor vector x = (x0
1, . . . , x

0
T )

0. The

challenge here is to identify (�, �) under general assumptions on the conditional distribution

of u = (u1, . . . , uT )0 given x = (x0
1, . . . , x

0
T )

0. For important work on inference on (�, �) here,

see Heckman (1981) and Chamberlain (1984). Honoré and Kyriazidou (2000) provide some

su�cient conditions for point identification in this model 4.

This paper’s main focus is the question of identification of ✓ = (�, �0)0 under minimal

assumptions. The starting point is a class of models defined by weak assumptions on the

distribution of u|↵, x, and the main contribution is the characterization of the sharp iden-

tification region5 for ✓. We generalize the results in the literature in many directions. For

example, we maintain stationarity restrictions on the distribution of u conditional on x and

↵ and derive the identified set for ✓ when T = 2 (and also when T = 3 and larger). We then

strengthen the stationarity assumption on u (which allows for serial correlation) to condi-

tional exchangeability and derive the identified set under these assumptions. These identified

sets do not require any restrictions on the distribution of ↵, or restrictions on the support of

the regressor vector x over time hence allowing for time trends, time dummies and/or only

discrete regressors. Throughout, these restrictions do not condition on the initial condition

y0 and so are internally consistent as we add more time periods. We also provide su�cient

point identification conditions in terms of variation in the support of x that provide new

point identification results. In addition we provide su�cient conditions for identification of

3Though in this paper we treat � as a fixed parameter to be estimated, it is possible to extend the
approaches here to cases where � can be modeled as some function of regressors.

4For other work on di↵erent dynamic models, see the thorough literature survey in Arellano and Honoré
(2001), as well as the papers Honoré and Tamer (2006), Honoré and Lewbel (2002), Altonji and Matzkin
(2005) , Chen, Khan, and Tang (2015)

5Other recent work that established sharp identification regions for structural parameters in nonlinear
models includes Khan, Ponomareva, and Tamer (2011), Khan, Ponomareva, and Tamer (2016).
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the sign of � in a model with and without covariates with T = 2, 3. Complementing our

identification results, we provide a novel linear programming based inference procedure that

provides a confidence set for the identified set that is simple to compute. We also provide

extensive Monte Carlo evidence on the size of the identified set and how sensitive it is to

varying assumptions

More recently, there has been work on the econometrics question of dynamics in discrete

choice models. For example, Pakes and Porter (2014) provide novel methods for inference

in multinomial choice models with individual fixed e↵ects allowing for partial identification.

Shi, Shum, and Song (2018) study also a multinomial choice model with fixed e↵ects (but

no dynamics) under cyclic monotonicity requirements. Aguirregabiria, Gu, and Luo (2018)

study a version of the dynamic discrete choice model with logit errors by deriving clever

su�cient statistics for the unobserved fixed e↵ect. Also, Honoré and Tamer (2006) pro-

vide bounds on ✓ in a parametric random e↵ects model without assumptions on the initial

condition distribution. Their approach can be used in many (nonlinear) panel models with

fixed e↵ects to approximate the size of the identified set. Ouyang, Khan, and Tamer (2017)

extend results in Honoré and Kyriazidou (2000) to cover point identified multinomial models

with dynamics. Honoré and Kyriazidou (2019) calculate identified regions for parameters in

panel data autoregression models (although they do not provide an explicit characterization

of these identified regions). Finally, there is also a complementary literature that is inter-

ested in inference on average e↵ects in panel data models. See for example Chernozhukov,

Fernández-Val, Hahn, and Newey (2013). In addition, Torgovitsky (2016) constructs iden-

tified sets for average causal e↵ect of lagged outcomes in binary response models under

minimal assumptions. Finally, the above linear autoregressive model has a direct link to

the structural dynamic discrete decision problems in economics. See for example Merlo and

Wolpin (2008) and references therein.

The rest of our paper is organized as follows. The next section introduces the main model

we wish to consider the identification of and previews the conditions we will be assuming.

Section 3 begins our analysis by focusing on the setting of a panel data with two periods.

Section 3.1 addresses identification of the structural parameters in this setting under a con-

ditional stationarity assumption, as was introduced in Manski (1987) for the static binary

response panel data model. Section 3.2 explores the identified region for the same model

but under stricter conditions un the unobserved components. Specifically we strengthen our

restrictions from stationarity to exchangeability and then serial independence. These models
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are proven to have informational content in the sense that they result in smaller identified

regions than the model in Section 3.1, yet still more general than the models introduced in

Chamberlain (1985) and Honoré and Kyriazidou (2000). Section 4 considers extensions of

the model to allow for a panel data with a longer time series. Specifically, in 4.1 we add

additional time periods to the panel, exploring the time component’s informational content

by showing how the identified region shrinks when more periods are available. Section 5

compliments our identification results in the previous sections by proposing computation-

ally attractive methods to conduct inference on the structural parameters. This will enable

testing, for example, if there is indeed persistence in the binary variable of interest. Section

6 explores the finite sample properties of our procedures with an empirical application on

female employment status as well as reporting results from simulation studies which explore

how the identified region varies across the di↵erent models considered. Section 7 concludes

with discussions on areas for future research, such as the e↵ect of introducing more choices

available to the agent, by studying a dynamic multinomial choice model with individual and

choice e↵ects, as first introduced in Chamberlain (1984) and more recently in Pakes and

Porter (2014) and Ouyang, Khan, and Tamer (2017).

2 Dynamic Panel Binary Choice Model

Recall our model of the form:

yt = I{ut  x0
t� + �yt�1 + ↵} (2.1)

where ut is an unobserved scalar random variable, xt is an observed k�dimensional vector of

covariates, � denotes an unknown k dimensional vector of regression coe�cients, ↵ denotes

the unobserved scalar individual specific e↵ect. The observed binary variable yt takes the

value 1 if the argument inside the indicator function I{·} is true, and 0 otherwise. Finally,

we let the unknown scalar parameter � denote the measure of persistence in the model.

In what follows we will will explore the identifiability of the unknown parameters �, �,

when making one of the following assumptions about the distribution of u1, u2, . . . , uT :
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(STAT) Stationarity (identical distribution):

ut ⇠ u1|↵, x, for all t = 2, . . . , T

(CEX) Exchangeability: for any k  T and any permutation (s1, . . . , sk) of (1, . . . , k),

(u1, . . . , uk) ⇠ (us0 , . . . , usk)|↵, x

(CID) Conditional i.i.d.:

u1, . . . , uT ⇠ i.i.d.|↵, x

(IND) Full independence, semiparametric:

u1, . . . , uT ⇠ F (·)|↵, x

where F (·) does not depend on ↵, x.

These di↵ering assumptions relate to each other in terms of their level of generality.

Specifically, (STAT) is the weakest assumption, (CIID) implies (CEX), and finally, (IND)

implies (CIID). As we will show, the converses however are not true for any of these rela-

tionships. The (CIID) and (CEX) assumptions can be equivalent under a particular form

of conditional exchangeability (T = 1 in (CEX) assumption). Note also that (STAT)

and (CEX) do not involve conditioning on the initial condition y0. Note that Assumption

(CIID) can be further strengthened to u1, . . . , uT being mutually independent and identi-

cally distributed and also independent from x and ↵ (IND assumption). This latter version

is used in Honoré and Kyriazidou (2000) along with other support condition to obtain point

identification. We also require throughout the Assumption below.

Assumption 2.1. Suppose that the following conditions hold for model 2.1:

A1. u = (u1, . . . , uT ) is absolutely continuous conditional on ↵, x.

A2. We observe i = 1, . . . , n i.i.d. draws from (2.1): {yi = (yi0, . . . , yiT ), xi = (xi1, . . . , xiT ), i =

1, . . . , n}.

These are common regularity conditions. The first allows us to use strict monotonicity

of the distribution functions of various objects. A2 describes the sampling process. Finally,
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we assume that n is large relative to T , so any notions of asymptotics are derived under the

assumption that n ! 1, while T is fixed. The next Section analyzes in details the sharp

identification of the model when T = 2. We provide characterization of the identified set

without making any assumptions on the support of the regressors. The Section contains the

main results in the paper.

3 Identification with T = 2

We first analyze what can be learned with T = 2 time periods. This assumes that we have

access to the initial period t = 0 and then two more periods t = 1 and t = 2.

3.1 Stationarity with T = 2

We start by analyzing identifying power of stationarity assumption (STAT). Specifically, we

assume the econometrician observes a random sample for the random variables y0, y1, y2, x1, x2

and maintain the assumption:

Assumption 3.1. (STAT)

ut ⇠ u1|↵, x for t = 2, . . . , T

Note that we require that stationarity holds conditional on the fixed e↵ect and the vector

of all lead and lags of the regressor x. On the other hand, no assumptions are made on the

support of x (this can only be a time trend or time dummy for example), and we do not

condition on the initial outcome y0.

The result below (the proof of which is in the Appendix) gives us the set of all parameters

that are observationally equivalent to the true parameter under this stationarity assumption

(so that this set is the sharp identified set under (STAT) assumption).

Theorem 3.1. Let Assumption 2.1 hold. Let ⇥{1,2}
I,stat be the set of ✓ = (�0, �)0 that satisfy the

restrictions below: if for some x,

(1) P (y2 = 1|x) � P (y1 = 1|x) ) (x2 � x1)0� + |�| � 0;
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(2) P (y1 = 1|x) � P (y2 = 1|x) ) (x2 � x1)0� � |�|  0;

(3) P (y1 = 0, y2 = 1|x) + P (y0 = 1, y1 = 0|x) � P (y1 = 1|x) + P (y2 = 0|x) ) (x2 � x1)0� �
min{0, �} � 0;

(4) P (y1 = 1, y2 = 0|x) + P (y0 = 0, y1 = 1|x) � P (y1 = 0|x) + P (y2 = 1|x) ) (x2 � x1)0� +

min{0, �}  0;

(5) P (y0 = 0, y1 = 0|x) � P (y2 = 0|x) ) (x2 � x1)0� +max{0, �} � 0;

(6) P (y0 = 1, y1 = 1|x) � P (y2 = 1|x) ) (x2 � x1)0� �max{0, �}  0;

(7) P (y0 = 0, y1 = 0|x) + P (y1 = 0, y2 = 1|x) � 1 ) (x2 � x1)0� � 0;

(8) P (y0 = 1, y1 = 1|x) + P (y1 = 1, y2 = 0|x) � 1 ) (x2 � x1)0�  0;

(9) P (y0 = 1, y1 = 0|x) + P (y1 = 0, y2 = 1|x) � 1 ) (x2 � x1)0� � � � 0;

(10) P (y0 = 0, y1 = 1|x) + P (y1 = 1, y2 = 0|x) � 1 ) (x2 � x1)0� + �  0

for all ✓ = (�0, �)0 2 ⇥{1,2}
I,stat. Then ⇥{1,2}

I,stat is the sharp identified set for ✓ under stationarity

assumption 3.1 with T = 2.

Stationarity (or identical distribution of error terms) is the key identifying assumption

in Manski (1987) for the static binary response model with fixed e↵ects. The above char-

acterization extends this result to dynamic models without any restrictions on the support

of the covariate distribution. In addition, the above is also constructive. By this we mean

we can use the above inequalities to construct set estimation and inference procedures for

the parameters �, �. For example, we note that the left hand side of the above inequalities

are all conditional choice probabilities that can be estimated from the data. The right hand

side of the above inequalities involve indexes which are based on both observed variables

and unknown parameters. Consequently our identified set and estimator thereof will be the

set of all the values of �̃, �̃ where the above inequalities hold true. As we show here, this

set will generally not reduce to a unique point, at least not without other conditions on the

disturbances and the regressors. Our main point from the theorem is that the set based on

the above inequalities, is the smallest set attainable based on the stated assumptions in the

model (and the data).
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3.2 Exchangeability with T = 2

In this section, we replace the conditional (on ↵ and x) stationarity assumption with condi-

tional (on ↵, x, y0) exchangeability6 of idiosyncratic error terms and investigate its identifying

power.

Definition 1. A sequence u1, u2, . . . , uT is exchangeable conditional on ↵, x, y0 if the follow-

ing conditions hold:

(i) ut ⇠ u1|↵, x, y0 for all t = 2, . . . , T .

(ii) For any k  T and any permutation (s1, . . . , sk) of (1, . . . , k),

(u1, . . . , uk) ⇠ (us0 , . . . , usk)|↵, x, y0

A simple example of an exchangeable sequence is a sequence of i.i.d. random variables:

if u1, . . . , uT are i.i.d. conditional on ↵, x, y0, then that sequence is also exchangeable. In

general, conditional independence is a stronger assumption than exchangeability, but as we

show in this paper, for the identification purposes in a dynamic panel binary choice model

2.1, the two assumptions are equivalent. Note also that the above exchangeability is stated

conditional on the initial condition y0. We do not think this is a strong assumption. In

particular, the lemma below provides su�cient conditions on the structural components of

model 2.1 that guarantee this conditional (on y0) exchangeability.

Lemma 3.1. Assume that model 2.1 has a beginning M periods back (no dynamic compo-

nent), so that

y�M = 1{u�M  x0
�M� + ↵}

where M � 0. Also, assume that (u�M , . . . , u0, u1, . . . , uT ) is exchangeable conditional on

↵, x�M , . . . , x0, x1, . . . , xT . Then (u1, . . . , uT ) is exchangeable conditional on ↵, x, y0 where

x = (x1, . . . , xT ).

The proof of this result is in the Appendix. The assumption that there is the beginning (or

start) is crucial here, since it allows us to condition on a finite (although unobserved) history

6This assumption has been used in the literature for di↵erent models to identify parameters of interest.
See, for example Altonji and Matzkin (2005).
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u�M , . . . , u0, x�M , . . . , x0, and ↵; and at the same time y0 (the first observable outcome) is

a deterministic function of that history.

Given the above, we analyze the identifying power of the conditional exchangeability of

idiosyncratic error terms ut’s, summarized in the following assumption:

Assumption 3.2. (CEX): u1, . . . , uT are exchangeable conditional on ↵, x, y0.

An even stronger alternative to the stationarity Assumption 3.1 is the conditional indepen-

dence assumption:

Assumption 3.3. (CID): u1, . . . , uT are independent and identically distributed conditional

on ↵, x, y0.

For T = 2, the assumption of exchangeability implies two things: that u1 and u2 have the

same marginal distribution (that part is similar to the stationarity assumption 3.1), and also

that jointly, (u1, u2) has the same distribution as its permutation (u2, u1). The conditional

(on ↵, x, and y0) stationarity of ut’s implies that ut’s are also stationary conditional on

↵ and x only, so we expect (and show) that exchangeability provides stronger identifying

results than the stationarity assumption discussed in the previous section. At the same time,

we also show that when T = 2, the pair-exchangeability (part (ii) of Definition 1) does not

add any identifying power on top of stationarity condition (part (i)). However, with T = 3,

pair- and triplet- exchangeability has significant identifying power on top of stationarity (see

Section 4).

The identifying power of Assumption 3.2 comes from two parts of Definition 1. Specif-

ically, restrictions on parameters � and � implied by part (ii) are given in the proposition

below.

Proposition 3.1. Assume that Assumption 2.1 holds, and suppose that (u1, u2) ⇠ (u2, u1)

conditional on (↵, x, y0) (so that part (ii) of Definition 1 holds for T = 2). Then parameters

� and � must satisfy the following conditions for every (x, y0) in the support:

(1) If (x2 � x1)0� � �y0  0 and (x2 � x1)0� � �y0 + �  0, then P (y1 = 1, y2 = 0|x, y0) �
P (y1 = 0, y2 = 1|x, y0);

(2) If (x2 � x1)0� � �y0 � 0 and (x2 � x1)0� � �y0 + � � 0, then P (y1 = 1, y2 = 0|x, y0) 
P (y1 = 0, y2 = 1|x, y0)
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where at least one strict inequality on the left-hand side implying strict inequality on the

right-hand side.

Proof: Conditional exchangeability together with part A1 of Assumption 2.1 assumption

imply that

P (y1 = 1, y2 = 0|↵, x, y0)
P (y1 = 0, y2 = 1|↵, x, y0)

=
P (u1  ↵ + x0

1� + �y0, u2 > ↵ + x0
2� + �|↵, x, y0)

P (u1 > ↵ + x0
1� + �y0, u2  ↵ + x0

2�|↵, x, y0)

=
P (u1  ↵ + x0

1� + �y0, u2 > ↵ + x0
2� + �|↵, x, y0)

P (u1  ↵ + x0
2�, u2 > ↵ + x0

1� + �y0|↵, x, y0)

And since P (u1  a1, u2 > a2|↵, x, y0) is strictly increasing in a1 and strictly decreasing in

a2, we have the following:

(1) If x0
1� + �y0 � x0

2� and x0
1� + �y0 � x0

2� + �, then P (y1 = 1, y2 = 0|↵, x, y0) � P (y1 =

0, y2 = 1|↵, x, y0)

(2) If x0
1� + �y0  x0

2� and x0
1� + �y0  x0

2� + �, then P (y1 = 1, y2 = 0|↵, x, y0)  P (y1 =

0, y2 = 1|↵, x, y0)

where strict inequalities in parameters imply strict inequalities in probabilities (since u1, u2

are absolutely continuous conditional on ↵, x, y0. Integrating ↵ out gives us conditions (1)

and (2). ⌅

Note here that if � = 0, conditions (1) and (2) in Proposition 3.1 reduce to a variant of

Manski’s identification conditions for the static panel data binary choice model, for outcomes

such that y1 + y2 = 0:

1. P (0, 1|x, y0) � P (1, 0|x, y0) implies that (x2 � x1)0� � 0

2. P (1, 0|x, y0) � P (0, 1|x, y0) implies that (x2 � x1)0�  0

3. P (1, 0|x, y0) = P (0, 1|x, y0) if and only if (x2 � x1)0� = 0.

Manski provided su�cient conditions on the support of the regressor vector x that leads

to point identification of � (essentially requiring full support for the regression index). This
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is interesting since the result in Proposition 3.1 provides a characterization of the identified

set in the Manski model without any conditions7 on the support of x.

The next Theorem, whose proof follows, is the main result in this section.

Theorem 3.2. Suppose that Assumption 2.1 holds. Let ⇥{1,2}
I,cex(2) be the set of parameters

that satisfy conditions (1) and (2) of Proposition 3.1. Also let ⇥{1,2}
I,cex(1) satisfy the following

restriction: if for some z = (x, y0)

(1) P (y1 = 1|z) � P (y2 = 1|z) ) (x2 � x1)0�̃ +min{0, �̃}� �̃y0  0;

(2) P (y1 = 1|z)  P (y2 = 1|z) ) (x2 � x1)0�̃ +max{0, �̃}� �̃y0 � 0;

(3) P (y1 = 0, y2 = 1|z) � P (y1 = 1|z) ) (x2 � x1)0�̃ � �̃y0 � 0;

(4) P (y1 = 1, y2 = 0|z) � P (y1 = 0|z) ) (x2 � x1)0�̃ + �̃(1� y0)  0;

for all ✓̃ 2 ⇥{1,2}
I,cex(1). Then ⇥{1,2}

I,cex = ⇥{1,2}
I,cex(2)\⇥{1,2}

I,cex(1) is the sharp identified set for ✓ under

either conditional exchangeability assumption 3.2 or conditional independence assumption 3.3

when T = 2.

In this result, ⇥{1,2}
I,cex(2) is the sharp identified set for ✓ under the assumption that pairs

(u1, u2) and (u2, u1) are identically distributed conditional on y0, x and ↵ (which is an

implication of conditional exchangeability). Conditional exchangeability assumption also

implies that u1 and u2 are identically distributed, too, so ⇥{1,2}
I,cex(1) is the sharp identified set

for ✓ that respects the condition where u1 and u2 are identically distributed conditional on

y0, x, and ↵. We show that with only two time periods, exchangeability assumption does not

add anything on top of stationarity assumptions, as summarized in the following corollary.

Corollary 3.1. Under Assumption 2.1, ⇥{1,2}
I,cex(1) ⇢ ⇥{1,2}

I,cex(2).

Proof: Since P (y1 = 1|z) = P (y1 = 1, y2 = 0|z) + P (y1 = 1, y2 = 1|z) and P (y2 = 1|z) =
P (y1 = 0, y2 = 1|z)+P (y1 = 1, y2 = 1|z), we can write conditions (1) and (2) for set ⇥{1,2}

I,cex(1)

as
7Note that in the Manski model, � can be point identified even with discrete regressors as long as choice

probabilities are equal to 1
2 on a su�ciently rich set. See Condition 3 above.
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(1) P (y1 = 1, y2 = 0|x, y0) � P (y1 = 0, y2 = 1|x, y0) ) (x2 � x1)0� +min{0, �}� �y0  0

(2) P (y1 = 1, y2 = 0|x, y0)  P (y1 = 0, y2 = 1|x, y0) ) (x2 � x1)0� +max{0, �}� �y0 � 0

Since u1, u2 are strictly continuously distributed conditional on ↵, z, strict inequalities in

parameters imply strict inequalities in probabilities in Proposition 3.1, so that we have:

(1) (x2 � x1)0� � �y0 +max{0, �} < 0 ) P (y1 = 1, y2 = 0|x, y0) > P (y1 = 0, y2 = 1|x, y0)

(2) (x2 � x1)0� � �y0 +min{0, �} > 0 ) P (y1 = 1, y2 = 0|x, y0) < P (y1 = 0, y2 = 1|x, y0)

which is equivalent to conditions (1) and (2) for ⇥{1,2}
I,cex(1). ⌅

3.2.1 Proof of Theorem 3.2

The proof of Theorem 3.2 above consists of three Lemmas. First, Lemma 3.2 shows that

infinite conditional exchangeability and conditional independence models are observationally

equivalent. This result is interesting by itself but here it allows us to connect conditional

exchangeability and CIID in a natural way. Lemma 3.3 is a fundamental result in this paper

that is used for proving sharpness in the stationary model also. This result uses interesting

marginal probability vs joint probability comparisons that we see in the characterization of

the identified sets (see for example 3) and 4) in Theorem 3.2). Lemma 3.4 provides a similar

result under conditional iid assumption.

Some notation that will be useful here: u = (u1, . . . , uT ) denotes the vector of error

terms. Also, Fu,↵|z denotes the distribution of unobservables conditional on z = (y0, x), and

p(y0, y1, y2, x|✓, Fu,↵|z) denotes the distribution of observables in the model characterized by

parameter ✓ and Fu,↵|z.

Lemma 3.2. Let u1, . . . , uT , . . . be conditionally (on ↵ and z = (y0, x)) exchangeable for any

T � 2, and continuously distributed. We observe {(y1 = 1{ut  ↵ + a1}, . . . , yT = 1{uT 
↵+ aT}), y0, x}, where at = x0

t�+ �yt�1 for t = 1, . . . , T . Then there exist ũ1, . . . , ũT , ↵̃ such

that ũ1, . . . , ũT are iid conditional on ↵̃ and z = (y0, x); and for ỹ1 = 1{ũt  ↵̃+a1}, . . . , ỹT =

1{ũT  ↵̃ + aT}) we have the following for any d1, . . . , dT 2 {0, 1}:

P (ỹ1 = d1, . . . , ỹT = dT |y0, x) = P (y1 = d1, . . . , yT = dT |y0, x)

13



Proof: Although Lemma 3.2 requires us to look at only some sequences (a1, . . . , aT ) and

to match only the distribution of indicator variables y1, . . . , yT , infinite exchangeability of

u1, . . . , uT , . . . allows us to get a much stronger result: conditional on z, we can match the

whole distribution of (u1 � ↵, . . . , uT � ↵) to a conditional iid model (ũ1 � ↵̃, . . . , ũT � ↵̃).

So below we prove a general result for an arbitrary sequence (a1, . . . , aT ). First, note that if

u1, . . . , uT are exchangeable conditional on ↵ and z, then u1�↵, . . . , uT �↵ are exchangeable

conditional on z.

Next, conditional on z, for infinitely exchangeable sequences, Theorem 3 in Olshen (1973)

implies that there exists a scalar random variable ↵̃ such that conditional on ↵̃, u1 �↵, u2 �
↵, . . . , uT � ↵ are iid:

P (u1 � ↵  a1, u1 � ↵  a2, . . . , uT � ↵  aT |z, ↵̃) =
TY

t=1

P (ut � ↵  at|z, ↵̃)

Let ũt = ut � ↵ + ↵̃. Then we have the following:

P (ũ1  a1 + ↵̃, . . . , ũT  aT + ↵̃|z, ↵̃) =
TY

t=1

P (ũt  at + ↵̃|z, ↵̃)

That is, for an exchangeable sequence (u1�↵, . . . , uT �↵) we were able to construct a model

(ũ1, . . . , ũT , ↵̃) such that

(i) both models are observationally equivalent:

P (u1  a1 + ↵, . . . , uT  aT + ↵|z) =
Z

P (u1 � ↵  a1, . . . , uT � ↵  aT |z, ↵̃)dF (↵̃|z)

=

Z
P (ũ1  a1 + ↵̃, . . . , ũT  aT + ↵̃|z, ↵̃)dF (↵̃|z)

=P (ũ1  a1 + ↵̃, . . . , ũT  aT + ↵̃|z)

(ii) ũ1, . . . , ũT are iid conditional on z and ↵̃.

This implies that infinite conditional exchangeability and conditional iid assumptions pro-

duce observationally equivalent models. ⌅

The next lemma is a key result in the paper. For any parameter in ⇥{1,2}
I,cex it constructs a
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model

ỹt = I{ũt  x0
t�̃ + �̃ỹt�1 + ↵̃, t = 1, 2}

where the distribution F̃ũ,↵̃|z obeys the exchangeability assumption, and where the distribu-

tion of (ỹ0, ỹ1, ỹ2, x) is the same as in the true model, i.e.

p(ỹ0, ỹ1, ỹ2, x|✓̃, F̃ũ,↵̃|z) = p(y0, y1, y2, x|✓, Fu,↵|z)

Lemma 3.3. Let Fcex be the set of all distributions Fu,↵|z such that Fu|↵,z satisfies exchange-

ability assumption for all ↵ and z = (x, y0). Then for any ✓̃ 2 ⇥{1,2}
I,cex, ✓

o.e.⇠F ✓̃ under Fcex.

Proof: First, let ỹ0 = y0 so both models begin identically. Let’s pick an arbitrary parameter

✓̃ 2 ⇥ and consider the following model

ỹt = I{ũt  xt�̃ + �̃ỹt�1 + ↵̃}

where ↵̃ = 0 (zero fixed e↵ects).

The discussion below is conditional on z = (y0, x). For each z, we define

q̃1(z) = P (ũ1  x1�̃ + �̃y0|z) = F̃ (x1�̃ + �̃y0|z)

q̃20(z) = P (ũ2  x2�̃|z) = F̃ (x2�̃|z)

q̃21(z) = P (ũ2  x2�̃ + �̃|z) = F̃ (x2�̃ + �̃|z)

(3.1)

where F̃ is the conditional (on z) distribution of ũt.

An arbitrary choice for ✓̃ = (�̃, �̃) will induce an arbitrary order between x1�̃ + �̃y0,

x2�̃ + �̃ and x2�̃, which in turn induces the same ordering between q̃1(z), q̃20(z), q̃21(z).

A choice of ✓̃ corresponds to an ordering of q̃1(z), q̃20(z), q̃21(z). Consider a bivariate

copula C̃(·, ·|z) such that

q̃1(z) = P (y1 = 1|z)

C̃(q̃1(z), q̃21(z)|z) = P (y1 = 1, y2 = 1|z)

C̃(q̃1(z), q̃20(z)|z) = q̃20(z)� P (y1 = 0, y2 = 1|z)

(3.2)

That is, that copula matches conditional probabilities of observable outcomes: the first two

equations in (3.2) match P (y1 = 1, y2 = 0|z) and P (y1 = 1, y2 = 1|z), while the last equation
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matches P (y1 = 0, y2 = 1|z).

Copula C̃ is a non-negative, non-decreasing function where

C̃(q̃1(z), 0|z) = 0 and C̃(q̃1(z), 1|z) = q̃1(z)

Also, for any q2, C̃(q̃1(z), q2|z) is bounded by Fréchet-Hoe↵ding bounds:

max{q̃1(z) + q2 � 1, 0}  C̃(q̃1(z), q2|z)  min{q̃1(z), q2}

To visually illustrate potential solutions to (3.2) and some restrictions that these solutions

must satisfy, we turn to Figure 1. Here, the solution to (3.2) will be represented by the

intersection of a non-decreasing in q2 function C̃(P 1
1 , q2) that lies within the Fréchet-Hoe↵ding

bounds, with the red horizontal line P (y1 = 1, y2 = 1|z), and the blue line q2�P (y1 = 0, y2 =

1|z). If C̃(P 1
1 , ·) crosses the red line to the left of the blue line, then q̃21(z) < q̃20(z); if it

crosses the red line to the right of the blue line, then q̃21(z) < q̃20(z).

Figure 1: P t
j = P (yt = j|z) and Pjk = P (y1 = j, y2 = k|z). The dashed curves represent potential copula function C̃(P 1

1 , q2)
as a function of q2.

Since copulas are non-negative, q̃20(z) � P01. So if P (y1 = 0, y2 = 1|z) � P (y1 = 1|z),
then q̃20(z) > q̃1(z) and so we need to place the following restrictions on ✓̃ to be able to find

a solution to (3.2):

(x2 � x1)�̃ � �̃y0 � 0

A copula function (dashed or dash-dotted line in Figure 1) can cross the red line to the
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right of P 1
1 (so that q̃21(z) > q̃1(z)) only if the lower bound evaluated at q2 = P 1

1 is smaller

than P11 = P (y1 = 1, y2 = 1|z). If this is not true, that is if

max{2P 1
1 � 1, 0} > P11

then q̃21(z)  q̃1(z). That is, if P (y1 = 0|z) < P (y1 = 1|z) � P (y1 = 1, y2 = 1|z) ⌘ P (y1 =

1, y2 = 0|z), then we have to place the following restrictions on �̃, �̃:

(x2 � x1)�̃ + �̃(1� y0)  0

Finally, since copulas are non-decreasing, one solution (either q̃20(z) or q̃21(z)) to second

and third equations in (3.2) will have to be to the left of the intersection of blue and red

line, and another solution has to be to the right of that intersection. Which means that if

P 2
1  P 1

1 , then

min{q̃20(z), q̃21(z)}  P 1
1 = q̃1(z)

and similarly, if P 2
1 � P 1

1 , then

max{q̃20(z), q̃21(z)} � P 1
1 = q̃1(z)

That is, if P (y1 = 1|z)  P (y2 = 1|z), we’ll be able to find a solution to (3.2) for a chosen

✓̃ only if

x0
2�̃ +min{0, �̃}  x0

1�̃ + �̃y0

Similarly, if P (y1 = 1|z) � P (y2 = 1|z), we’ll be able to find a solution to (3.2) for a chosen

✓̃ only if

x0
2�̃ +max{0, �̃} � x0

1�̃ + �̃y0

Note that if ✓̃ satisfies these four restrictions above, then there exists a solution to (3.2):

for example, we can choose a bivariate Fréchet copula that is a convex combination of upper

and lower Fréchet-Hoe↵ding bounds (which are proper copulas in a bivariate case) and the

bivariate independence copula:

C̃(q1, q2) = �1 min{q1, q2}+ �2 max{q1 + q2 � 1, 0}+ �3q1q2
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where �1 + �2 + �3 = 1 and dj � 0

A bivariate Fréchet copula is symmetric. If the joint distribution of ũ1 and ũ2 is defined

by a symmetric copula, i.e. if

F̃ũ1,ũ2|z = C̃(F̃, F̃ )

then ũ1 and ũ2 are exchangeable.

Given a solution q1(z), q20(z) and q21(z) to (3.2) described above, we can always find a

di↵erentiable cumulative distribution function F̃ such that (3.1) holds, so that ũt is absolutely

continuous w.r.t. Lebesgue measure µ.

Finally, ✓̃ satisfies the four restrictions described above if and only if ✓̃ 2 ⇥{1,2}
I,cex. That is,

for any ✓̃ 2 ⇥{1,2}
I,cex we are able to find the distribution F̃ũ,↵̃|z 2 Fcex such that

p(ỹ0, ỹ1, ỹ2, x|✓̃, F̃ũ,↵̃|z) = p(y0, y1, y2, x|✓, Fu,↵|z)

which means ✓̃ is observationally equivalent to the true ✓ under Fcex. ⌅

Next, we show that the same set ⇥{1,2}
I,cex gives us the set of parameters that are observa-

tionally equivalent to the true parameter under the conditional iid assumption.

Lemma 3.4. Let Fcex be the set of all distributions Fu,↵|z such that Fu|↵,z satisfies exchange-

ability assumption for all ↵ and z = (x, y0). Then for any ✓̃ 2 ⇥{1,2}
I,cex, ✓

o.e.⇠F ✓̃ under Fciid.

Proof: Now suppose that F 2 Fciid. As before, everything below is conditional on z.

Suppose that ✓̃ 2 ⇥{1,2}
I,cex and C̃ is a Fréchet copula that solves equation (3.2) with marginal

distribution F̃ for that ✓̃. Yang, Qi, and Wang (2009) show for any T > 2 there exists a

T -variate copula C̃T such that

(i) all of its two-dimensional margins are given by the bivariate Fréchet copula C̃;

(ii) there exists a sequence of T uniform [0, 1] random variables Q1, . . . , QT and a uniform

[0, 1] random variable Q̃ such that Q1, . . . , QT are iid conditional on Q̃ and the joint

distribution of Q1, . . . , QT is given by C̃.

Now let’s define ũt = F̃�1(Qt). Then the sequence ũ1, ũ2, . . . , ũT is exchangeable for any

T , which in turn implies that the sequence ũ1, ũ2, . . . , ũT is infinitely exchangeable (see
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Konstantopoulos and Yuan (2018)). Finally, Lemma 3.2 guarantees that there exists F̃ũ,↵̃|z

such that ũ1, . . . , ũt are iid conditional on ↵̃ and z, and by construction,

p(ỹ0, ỹ1, ỹ2, x|✓̃, F̃ũ,↵̃|z) = p(y0, y1, y2, x|✓, Fu,↵|z)

⌅

Finally, to complete the proof of sharpness of ⇥{1,2}
I,cex, we need to show that ✓ is identified

relative to any ✓̃ /2 ⇥{1,2}
I,cex under either conditional exchangeability or conditional iid assump-

tions. Assume that for a given ✓̃ /2 ⇥{1,2}
I,cex e.g. condition (1) of Theorem 3.2 does not hold.

That is, there exists some z = (y0, x) such that

P (y1 = 1|z) � P (y2|z) and (x2 � x1)
0�̃ +min{0, �̃}� �̃y0 > 0

However, if there exists F̃ũ,↵̃|z 2 Fcex such that

p(ỹ0, ỹ1, ỹ2, x|✓̃, F̃ũ,↵̃|z) = p(y0, y1, y2, x|✓, Fu,↵|z)

then it must be the case that (see the proof of Lemma 3.3)

(x2 � x1)
0�̃ +min{0, �̃}� �̃y0  0

And since Fcex and Fciid are observationally equivalent here, this completes the proof of

Theorem 3.2. ⌅

3.3 Independence with T = 2: a Non-Stationary Model

Next, we strengthen the exchangeability assumption (CEX) to full independence assump-

tion (IND). This model of independence, unlike the stationary and exchangeability models

previously, does not restrict the correlation between u1 and u2. So, we have a non-stationary

model with independence.

Proposition 3.2. Assume that u = (u1, u2) is independent from (x, y0) and that �u =

u1 � u2 is absolutely continuous. Then for pairs of (x, y0) and (x̃, ỹ0), the parameters � and

� must satisfy the following restrictions:
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(1) If P (y1 = 1, y2 = 0|x, y0) � 1� P (y1 = 0, y2 = 1|x̃, ỹ0), then ((x1 � x2)� (x̃1 � x̃2))0� +

�(y0 � ỹ0 � 1) � 0.

(2) If P (y1 = 1, y2 = 0|x, y0) > 1� P (y1 = 0, y2 = 1|x̃, ỹ0), then ((x1 � x2)� (x̃1 � x̃2))0� +

�(y0 � ỹ0 � 1) > 0.

Remark 3.1. Note that the independence condition of Proposition 3.2 keeps the indepen-

dence assumption from Honoré and Kyriazidou (2000) but relaxes stationarity.

Given that y0, ỹ0 are binary, by looking at (1) and (2) in the Proposition 3.2 above, we

see that only the sign of � will be identified, but we may get some meaningful identification

for �. We can also potentially add more restrictions to shrink the identified set even further.

For example, if we assume that Med(u1�u2|x, y0) = 0, then the following must hold for any

x, y0 in the support:

(1) If P (y1 = 1, y2 = 0|x, y0) � 0.5, then (x1 � x2)0� + �(y0 � 1) � 0.

(2) If P (y1 = 0, y2 = 1|x, y0) � 0.5, then (x1 � x2)0� + �y0  0.

In their semiparametric model setup, Honoré and Kyriazidou (2000) make two assump-

tions about unobservable components u1, u2:

(IND) u1, u2 are independent from ↵, x, y0;

(TIID) u1 and u2 are mutually independent (independent over time) and identically dis-

tributed (stationarity).

We showed that condition (TIID) does not have any additional identifying power over the

conditional exchangeability. However, independence condition (IND) can help to shrink the

set in Theorem 3.2.

3.4 Point Identification when T = 2

We explore the question of whether and under what conditions do the sharp sets characterized

in Theorems 3.1 and 3.2 shrink to a point. Naturally, we expect su�cient point identification

conditions to rely on enough variation in the regressor distribution. As will be shown, it turns
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out that with T = 2, under stationarity, � can be point identified and � can generally not

be point identified but its sign can be. This is in contrast to the T = 2 with exchangeability

where both beta and � can be point identified, though as will be shown, the latter only can

when it is nonnegative.

3.4.1 Point Identification under Stationarity

There are interesting implications of the conclusion of Theorem 3.1. Most notable, we

establish here that under support conditions on x the parameter vector � can be point

identified, but � cannot, though its sign can be. Let X ✓ R2k denote the support of

x = (x1, x2). Following Theorem 3.1, we define ten subsets (one for each inequality) of X
that can help us to identify the sign of �:

�X1 = {�x 2 Rk : 9x = (x1, x1 +�x) 2 X such that P (y1 = 1|x) > P (y2 = 1|x)}

�X2 = {�x 2 Rk : 9x = (x1, x1 +�x) 2 X such that P (y2 = 1|x) > P (y1 = 1|x)}

�X3 = {�x 2 Rk : 9x = (x1, x1 +�x) 2 X such that

P (y1 = 0, y2 = 1|x) + P (y0 = 1, y1 = 0|x) > P (y1 = 1|x) + P (y2 = 0|x)}

�X4 = {�x 2 Rk : 9x = (x1, x1 +�x) 2 X such that

P (y0 = 1, y1 = 0|x) + P (y0 = 0, y1 = 1|x) > P (y1 = 0|x) + P (y2 = 1|x)}

�X5 = {�x 2 Rk : 9x = (x1, x1 +�x) 2 X such that P (y0 = 1, y1 = 1|x) > P (y2 = 0|x)}

�X6 = {�x 2 Rk : 9x = (x1, x1 +�x) 2 X such that P (y0 = 1, y1 = 1|x) > P (y2 = 1|x)}

�X7 = {�x 2 Rk : 9x = (x1, x1 +�x) 2 X such that P (y0 = 0, y1 = 0|x) + P (y1 = 0, y2 = 1|x) > 1}

�X8 = {�x 2 Rk : 9x = (x1, x1 +�x) 2 X such that P (y0 = 1, y1 = 1|x) + P (y1 = 1, y2 = 0|x) > 1}

�X9 = {�x 2 Rk : 9x = (x1, x1 +�x) 2 X such that P (y0 = 1, y1 = 0|x) + P (y1 = 0, y2 = 1|x) > 1}

�X10 = {�x 2 Rk : 9x = (x1, x1 +�x) 2 X such that P (y0 = 0, y1 = 1|x) + P (y1 = 1, y2 = 0|x) > 1}

Similarly, we define the two sets that can be used to point identify �, and their union:

X7 = {x 2 X such that P (y0 = 0, y1 = 0|x) + P (y1 = 0, y2 = 1|x) � 1}

X8 = {x 2 X such that P (y0 = 1, y1 = 1|x) + P (y1 = 1, y2 = 0|x) � 1}

X7,8 = X7 [ X8
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Theorem 3.1 implies that �X7 ✓ {�x 2 Rk : �x� > 0} and �X8 ✓ {�x 2 Rk : �x� < 0}.
If these two set are large enough (as formalized in the assumption below), we will be able to

identify � from score conditions.

Assumption 3.4. Suppose that for the sets defined above, the following holds:

PID-STAT1. �X7,8 = {�x = x2 � x1 : x = (x1, x2) 2 X7,8} is not contained in any proper

linear subspace of Rk
.

PID-STAT2. There exists at least one j 2 {1, . . . , k} such that �j 6= 0 and for any �x 2
�X 7,8 the support of �xj = x2j � x1j is the whole real line (x2j � x1j has everywhere

positive Lebesgue measure conditional on �x�j = x2,�j � x1,�j).

Conditions PID-STAT1 and PID-STAT2 require that there is at least one covariate with

large support. This assumption is common in the literature and is e.g. used in Manski (1985)

for the cross-sectional semiparametric binary choice model or in Manski (1987) for the static

panel data binary choice model.

Under these assumptions we can attain point identification for �, though not � (although

the sign of � potentially can be identified), as stated in the following theorem that gives

su�cient conditions for point identification of � and the sign of � (the proof of this result is

delegated to the Appendix).

Theorem 3.3. Suppose that Assumptions 2.1, 3.1, and 3.4 hold. Then � is point identified

(up to scale). Further,

(1) If (�X1 [ �X5) \ �X10 6= ? or (�X2 [ �X6) \ (�X9) 6= ? or �X3 \ �X8 6= ? or

�X4 \�X7 6= ?, then � < 0.

(2) If �X5 \�X8 6= ? or �X6 \�X7 6= ?, then � > 0.

(3) If sets in both (1) and (2) have a non-empty intersection, then � is zero (so it is point

identified).

(4) Finally, when � is point identified, we can bound � as follows:

|�| � max{�m1,M2}

�  min{m9,�M10}
(3.3)

22



where for j = 1, 2, 9, 10:

mj = inf
�x2�Xj

�x0�, Mj = sup
�x2�Xj

�x0�

.

Note that the identification of the sign of � in this result does not rely on � being point

identified. However, when the sign of � is identified, we can weaken Assumption 3.4. In

particular, if � is positive, then we can replace X7 and X8 in Assumption 3.4 with X3 [ X7

and X4 [ X8, respectively, where

X3 = {x 2 X such that P (y1 = 0, y2 = 1|x) + P (y0 = 1, y1 = 0|x) � P (y1 = 1|x) + P (y2 = 0|x)}

X4 = {x 2 X such that P (y0 = 1, y1 = 0|x) + P (y0 = 0, y1 = 1|x) � P (y1 = 0|x) + P (y2 = 1|x)}

If � is negative, then we can replace X7 and X8 with X5[X7 and X6[X8, respectively, where

X5 = {x 2 X such that P (y0 = 1, y1 = 1|x) � P (y2 = 0|x)}

X6 = {x 2 X such that P (y0 = 1, y1 = 1|x) � P (y2 = 1|x)}

Note also that if 0 belongs to the support of (x2�x1) and if there exists x̃ = (x̃1, x̃2 = x̃1)0

such that P (y0 = 1, y1 = 0|x = x̃) + P (y1 = 0, y2 = 1|x = x̃) � 1, then � > 0. Similarly,

if there exists x̃ = (x̃1, x̃2 = x̃1)0 such that P (y0 = 0, y1 = 1|x = x̃) + P (y1 = 1, y2 = 0|x =

x̃) � 1, then � < 0.

3.4.2 Point Identification under Exchangeabililty

As was the case under the stationarity assumption, there are interesting special cases of the

conclusion of Theorem 3.2. Specifically, like there, we can attain point identification results
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with additional conditions on observed regressors. Again, we define the following sets:

�X1(y0) = {�x 2 Rk : 9x = (x1, x1 +�x) 2 X such that P (y1 = 1|x, y0) > P (y2 = 1|x, y0)}

�X2(y0) = {�x 2 Rk : 9x = (x1, x1 +�x) 2 X such that P (y2 = 1|x, y0) > P (y1 = 1|x, y0)}

�X3(y0) = {�x 2 Rk : 9x = (x1, x1 +�x) 2 X such that P (y1 = 0, y2 = 1|x, y0) > P (y1 = 1|x, y0)}

�X4(y0) = {�x 2 Rk : 9x = (x1, x1 +�x) 2 X such that P (y1 = 1, y2 = 0|x, y0) > P (y1 = 0|x, y0)}

X3(y0) = {x 2 X such that P (y1 = 0, y2 = 1|x, y0) � P (y1 = 1|x, y0)}

X4(y0) = {x 2 X such that P (y1 = 1, y2 = 0|x, y0) � P (y1 = 0|x, y0)}

Now Theorem 3.2 guarantees that �X1(y0) ⇢ {�x 2 Rk : �x0� + min{0, �} � �y0 < 0},
�X2(y0) ⇢ {�x 2 Rk : �x0� +max{0, �}� �y0 > 0}, �X3(y0) ⇢ {�x 2 Rk : �x0� � �y0 >

0}, and �X4(y0) ⇢ {�x 2 Rk : �x0� � �y0 < 0}. The last two sets will allow us to

point identify � is X3(0) and X4(1) have su�ciently large support, as summarized in the

assumption below.

Assumption 3.5. Suppose that for the sets defined above, the following holds:

PID-CEX1. �X3,4 = {�x = x2 � x1 : x = (x1, x2) 2 X3(0) [ X4(1)} is not contained in

any proper linear subspace of Rk
(where xt = (xt1, . . . , xtk)0).

PID-CEX.2 There exists at least one j 2 {1, . . . , k} such that �j 6= 0 and for any �x 2
�X 3,4 the support of �xj = x2j � x1j is the whole real line (x2j � x1j has everywhere

positive Lebesgue measure conditional on �x�j = x2,�j � x1,�j).

Note that conditions of Assumptions 3.5 are weaker than those of Assumption 3.4. Specif-

ically, X7 ⇢ X3 and X8 ⇢ X4, so that Assumptions 3.5 can hold even when Assumption 3.4

does not.

We state su�cient conditions for point identification of � and identification of � in the

next theorem (the proof is in the Appendix).

Theorem 3.4. Let Assumptions 2.1, 3.2 and 3.5 hold. Then � is point identified (up to

scale). Further,

(1) If �X1(y0) [ �X3(y0) 6= ? or �X2(y0) [ �X4(y0) 6= ? or �X1(0) [ �X2(1) 6= ? or

�X3(0) [�X4(1) 6= ?, then � < 0.
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(2) If �X2(0) [�X4(1) 6= ? or �X3(0) \�X1(1) 6= ?, then � > 0.

(3) If sets in both (1) and (2) have a non-empty intersection, then � is zero (so it’s point

identified).

(4) Finally, if � is point identified, we can bound � from above:

|�| � max{Q1,�q2}

�  min{�Q4, q3}
(3.4)

where

Q1 = sup
�x2�X1(0)[�X1(1)

�x0�, Q4 = sup
�x2�X4(0)

�x0�

q2 = inf
�x2�X2(0)[�X2(1)

�x0�, q3 = inf
�x2�X3(1)

�x0�

Remark 3.2. Note that in the above, it is possible that � is point identified when it is

nonnegative. Given enough variation in the supports of the sets in (3.4), the upper and

lower bounds can collapse to a point. See the Monte Carlo section for such a design where

we demonstrate that � is point identified. However, we can only get an upper bound for �

when � is negative. So then, generally, � is not point identified unless 1) it is positive, and

2) we have su�cient variation such that the above upper and lower bounds on � collapse.

Note on the other hand that � is always point identified under the su�cient conditions in

Theorem 3.4.

4 Extensions

In the previous section we explored identified regions for dynamic binary choice models with

fixed e↵ects under a varying assumptions, generally showing that these regions shrink as we

strengthened our conditions. In this section we extend those models in various directions and

show how the identified regions can change. We will extend the model in the time dimension.

Specifically we will explore the identifying power of time, by considering models where T = 3.

As we will show, there is identifying power in observing agents across more time periods.

Also, we show how our identification results hold up to the case without covariates.
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4.1 Stationarity and Exchangeability with T = 3

In this section we explore the informational content of observing data over additional time

periods, specifically we assume that T = 3. It is clear that having access to longer horizons

for individuals would have more identifying power. For example, in their model, Honoré

and Kyriazidou (2000) demonstrate how �, � could be point identified under rather mild

support restrictions in the T = 3 case but not the T = 2 setting. Here we will derive the

identified region for �, � for T = 3 under (unconditional on y0) stationarity and (conditional

on y0) exchangeability assumptions we defined previously. We start with the identified set

for ✓ ⌘ (�, �) under the (STAT) assumption which is given in the result below.

Theorem 4.1. Suppose that Assumptions 2.1 holds. Let ⇥{2,3}
I,stat be the set of ✓ 2 ⇥ that

is constructed in a same way as ⇥{1,2}
I,stat by shifting the time subscript by +1 (for details see

the proof below). Additionally, let ⇥{1,3}
I,stat be the set of parameters that satisfy the following

restrictions: if for some x,

(1) P (y3 = 1|x) � P (y1 = 1|x) ) (x3 � x1)0� + |�| � 0;

(2) P (y1 = 1|x) � P (y3 = 1|x) ) (x3 � x1)0� � |�|  0;

(3) P (y0 = 0, y1 = 0|x) � P (y3 = 0|x) or P (y2 = 1, y3 = 1|x) � P (y1 = 1|x) ) (x3 �
x1)0� +max{0, �} � 0;

(4) P (y0 = 1, y1 = 1|x) � P (y3 = 1|x) or P (y2 = 0, y3 = 0|x) � P (y1 = 0|x) ) (x3 �
x1)0� �max{0, �}  0;

(5) P (y0 = 1, y1 = 0|x) � P (y3 = 0|x) or P (y2 = 0, y3 = 1|x) � P (y1 = 1|x) ) (x3 �
x1)0� �min{0, �} � 0;

(6) P (y0 = 0, y1 = 1|x) � P (y3 = 1|x) or P (y2 = 1, y3 = 0|x) � P (y1 = 0|x) ) (x3 �
x1)0� +min{0, �}  0;

(7) P (y2 = 1, y3 = 1|x) + P (y0 = 1, y1 = 0|x) � 1 ) (x3 � x1)0� � 0;

(8) P (y2 = 1, y3 = 0|x) + P (y0 = 1, y1 = 1|x) � 1 ) (x3 � x1)0�  0;

(9) P (y2 = 0, y3 = 1|x) + P (y0 = 1, y1 = 0|x) � 1 ) (x3 � x1)0� � � � 0;

(10) P (y2 = 1, y3 = 0|x) + P (y0 = 0, y1 = 1|x) � 1 ) (x3 � x1)0� + �  0;
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(11) P (y2 = 0, y3 = 0|x) + P (y0 = 1, y1 = 1|x) � 1 ) (x3 � x1)0� � �  0;

(12) P (y2 = 1, y3 = 1|x) + P (y0 = 0, y1 = 0|x) � 1 ) (x3 � x1)0� + � � 0.

Then ⇥T=3
I,stat = ⇥{1,2}

I,stat \⇥{2,3}
I,stat \⇥{1,3}

I,stat is the sharp identified set for ✓ under Assumption 3.1

(stationarity).

With three time periods, we are able to shrink the identified set under T = 2 and

stationarity assumption (set ⇥{1,2}
I,stat defined in Theorem 3.1). Specifically, sets ⇥{1,3}

I,stat and

⇥{2,3}
I,stat provide additional restrictions on the parameters of interests � and � associated

with the third time period: ⇥{1,3}
I,stat gives us the set of parameters that are observationally

equivalent to the true parameter ✓ = (�0, �)0 under the assumption that u1 and u3 are

identically distributed, while ⇥{2,3}
I,stat does the same under the assumption that u2 and u3 are

identically distributed.

Next, we provide the identified set in the conditional exchangeability case with T = 3

where we also condition on the initial value y0. For T = 2 we demonstrated that adding

exchangeability assumption on top of assuming that u1 and u2 are stationary (identically

distributed) conditional on ↵, x and y0 did not provide any extra identifying power. However,

unlike the two-period case, we will see that with T = 3 exchangeability assumption does

indeed help to further shrink the identified set (beyond what stationarity assumption alone

does). Specifically, when T = 3, conditional exchangeability assumption now involves 24

moment inequalities of the “if, then” restrictions that are summarized in Table 3 in the

Appendix.

Some of restrictions in Table 3 are the same restrictions we have in Proposition 3.1

for T = 2 case (namely, pairs of restrictions 5.a and 6.a, and 7.a and 8.a). However, the

remaining 20 inequality conditions are new and never appeared before. The result below is

the analog of Proposition 3.1 for T = 2;

Proposition 4.1. Suppose that Assumption 2.1 holds and u = (u1, u2, u3) satisfy Assump-

tion 3.2 (exchangeability). Then parameters � and � must satisfy the restrictions in Table 3

for every (x, y0) in the support.

Note that the 3-exchangeability result in Proposition 4.1 also implies the 2-exchangeability

result from Proposition 3.1. Additionally, we can obtain Honoré and Kyriazidou (2000) point

identifying restrictions as a particular implication of Proposition 4.1, as summarized below.
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Remark 4.1. When x2 = x3, restrictions for event pairs {(0, 1, 0), (1, 0, 0)} and {(0, 1, 1), (1, 0, 1)}
in Table 3 reduce to the following set:

(1) If (x1 � x2)0� + �(y0 � 1) � 0, then p3(1, 0, 1|↵, x, y0) � p3(0, 1, 1|↵, x, y0)

(2) If (x1 � x2)0� + �(y0 � 1)  0, then p3(1, 0, 1|↵, x, y0)  p3(0, 1, 1|↵, x, y0)

(3) If (x1 � x2)0� + �y0 � 0, then p3(1, 0, 0|↵, x, y0) � p3(0, 0, 1|↵, x, y0).

(4) If (x1 � x2)0� + �y0  0, then p3(1, 0, 0|↵, x, y0)  p3(0, 0, 1|↵, x, y0).

That is, in Honoré and Kyriazidou (2000) notation:

P (A|↵, x, y0, x2 = x3) T P (B|↵, x, y0, x2 = x3) i↵ (x2 � x1)
0� + �(y3 � y0) T 0

Honoré and Kyriazidou (2000) obtain point identification from these inequalities under two

assumptions: that conditional on ↵, x, y0 distribution of u is absolutely continuous (CS2),

and that x21 ⌘ x2 � x1 contains a continuously distributed component (CS3). However,

they mention that similar result can be obtained under weaker conditions of conditional iid

assumption. Theorem 4.2 shows that we can also get rid of the first “i” in “iid” by weakening

it to conditional exchangeability.

Now we combine 3-exchangeability with conditional stationarity of u1, u2 and u3 to obtain

the identified set that is sharp under general exchangeability assumption.

Theorem 4.2. Let ⇥{1,2,3}
I,cex be the set of ✓ 2 ⇥ that satisfy restrictions in Proposition 4.1.

Also, let ⇥{1,3}
I,cex(1) be the set of parameters that satisfy the following restrictions: if for some

x, y0,

(1) P (y3 = 1|x, y0) � P (y1 = 1|x, y0) ) (x3 � x1)0� +max{0, �}� �y0 � 0;

(2) P (y1 = 1|x, y0) � P (y3 = 1|x, y0) ) (x3 � x1)0� +min{0, �}� �y0  0;

(3) P (y2 = 0, y3 = 1|x, y0) � P (y1 = 1|x, y0) ) (x3 � x1)0� � �y0 � 0;

(4) P (y2 = 0, y3 = 0|x, y0) � P (y1 = 0|x, y0) ) (x3 � x1)0� � �y0  0;

(5) P (y2 = 1, y3 = 1|x, y0) � P (y1 = 1|x, y0) ) (x3 � x1)0� + � � �y0 � 0;
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(6) P (y2 = 1, y3 = 0|x, y0) � P (y1 = 0|x, y0) ) (x3 � x1)0� + � � �y0  0.

Finally, let ⇥{2,3}
I,cex(1) satisfy the restrictions for ⇥{2,3}

I,stat in Theorem 4.1, only with the con-

ditional on x probabilities replaced by the conditional on z = (x, y0) probabilities. Then

⇥T=3
I,cex = ⇥{1,2,3}

I,cex \⇥{1,2}
I,cex(1)\⇥{2,3}

I,cex(1)\⇥{1,3}
I,cex(1) is the sharp identified set for ✓ under either

Assumption 3.2 (exchangeability) or Assumption 3.3 (conditional independence).

Here the intersection of sets ⇥{1,2}
I,stat, ⇥

{2,3}
I,stat and ⇥{1,3}

I,stat gives us the set of parameters that

are observationally equivalent to the true parameter under the assumption that u1, u2 and

u3 are identically distributed conditional on x, y0, and ↵. Set ⇥{1,2,3}
I,cex gives us the set of

parameters that are observationally equivalent to the true parameter under conditional (on

x, y0, and ↵) exchangeability of u1, u2, u3. Note that unlike the case with T = 2, some of

the exchangeability restrictions are not implied but any of the stationarity restrictions. For

example, exchangeability-based restriction 1.a in Table 3 is a stronger version the following

stationarity-based restriction for ⇥{2,3}
I,cex(1):

P (y1 = 0, y2 = 0|x, y0) � P (y3 = 0|x, y0) ) (x3 � x2)
0� +max{0, �} � 0

and so on.

4.2 Point Identification with T = 3

In this section we provide su�cient conditions for point identification of the parameters �, �

under the stationarity and exchangeability assumptions in the case for T = 3. Point identi-

fication under stationarity will rely on the result in Theorem 4.1, while point identification

under exchangeability will be based on Theorem 4.2.

We start with point identification under stationarity. Theorem 4.1 provides 6 conditions

that involve � only, so we can use these conditions to point identify � in a similar way we
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did for T = 2. In particular, we define the following sets

X {1,2}
7 = {x 2 X such that P (y0 = 0, y1 = 0|x) + P (y1 = 0, y2 = 1|x) � 1}

X {1,2}
8 = {x 2 X such that P (y0 = 1, y1 = 1|x) + P (y1 = 1, y2 = 0|x) � 1}

X {1,3}
7 = {x 2 X such that P (y0 = 1, y1 = 0|x) + P (y2 = 1, y3 = 1|x) � 1}

X {1,3}
8 = {x 2 X such that P (y0 = 1, y1 = 1|x) + P (y2 = 1, y3 = 0|x) � 1}

X {2,3}
7 = {x 2 X such that P (y1 = 0, y2 = 0|x) + P (y2 = 0, y3 = 1|x) � 1}

X {2,3}
8 = {x 2 X such that P (y1 = 1, y2 = 1|x) + P (y2 = 1, y3 = 0|x) � 1}

�X {1,2}
7,8 = {�x = x2 � x1 : x 2 X {1,2}

7 [ X {1,2}
8 }

�X {1,3}
7,8 = {�x = x3 � x1 : x 2 X {1,3}

7 [ X {1,3}
8 }

�X {2,3}
7,8 = {�x = x3 � x2 : x 2 X {2,3}

7 [ X {2,3}
8 }

and make the following assumption:

Assumption 4.1. Suppose that for the sets defined above, the following holds:

PID3-STAT1. �X7,8 = �X {1,2}
7,8 [�X {1,3}

7,8 [�X {2,3}
7,8 is not contained in any proper linear

subspace of Rk
(where xt = (xt1, . . . , xtk)0).

PID3-STAT2. There exists at least one j 2 {1, . . . , k} such that �j 6= 0 and for any

�x 2 �X 7,8 the support of �xj is the whole real line (�xj has everywhere positive

Lebesgue measure conditional on �x�j = (�x1, . . . ,�xj�1,�xj+1, . . . ,�xk)0).

Note that with T = 3 this assumption is more likely to hold than a similar assumption

for T = 2 (Assumption 3.4). Similar to T = 2 case, � is point identified if Assumption 4.1

holds.

We won’t present here identification results for the sign of � (again, these are very similar

to Theorem 3.3). Instead, we focus on discussing what can be learned about sign and

magnitude of � with that one extra period of observation. In particular, in contrast to

the result in Theorem 3.3, we can bound � directly both from above and from below. In

particular, we now have the following restrictions on � when � is point identified:

|�| � max{�m{1,2}
1 ,�m{1,3}

1 ,�m{2,3}
1 ,M{1,2}

2 ,M{1,3}
2 ,M{2,3}

2 }

�  min{m{1,2}
9 ,m{1,3}

9 ,m{2,3}
9 ,�M{1,2}

10 ,�M{1,3}
1 ,�M{2,3}

10 }

� � max{M{1,3}
11 ,�m{2,3}

12 }

(4.1)
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where m{t,s}
j and M{t,s}

j are defined similar to Theorem 3.3.

In comparison to T = 2 case in Theorem 3.3 where we only had an upper bound on �,

with T = 3 we now also can bound � from below (if a certain set is not empty), while the

upper bound becomes more tight as well.

4.3 Identification in a Model without Covariates

Here, we consider identification of the sign of � in the following model:

yt = I{ut  �yt�1 + ↵} t = 1, 2, ...T

Although the scale of � cannot be identified in that model, its sign sometimes can be iden-

tified. Below we characterize the conditions under which this is possible to do.

We start with T = 2 and stationarity Assumption 3.1. The last two inequalities in Theo-

rem 3.1 allow us (sometimes, if a particular relationship between conditional probabilities of

certain events holds) to tell that � is negative. In particular, without covariates x conditions

(9) and (10) of Theorem 3.1 become:

(9) : P (y0 = 1, y1 = 0) + P (y1 = 0, y2 = 1) � 1 ) �  0

(10) : P (y0 = 0, y1 = 1) + P (y1 = 1, y2 = 0) � 1 ) �  0
(4.2)

Similarly, Theorem 3.2 allows to potentially identify the sign of � under conditional ex-

changeability Assumption 3.2:

(3) : P (y1 = 0, y2 = 1|y0 = 1) � P (y1 = 1|y0 = 1) ) �  0

(4) : P (y1 = 1, y2 = 0|y0 = 0) � P (y1 = 0|y0 = 0) ) �  0
(4.3)

Note that conditions (3) and (4) in 4.3 are a weaker set of restrictions on probabilities of

observing certain events than conditions (9) and (10) in 4.2. For example, condition (3) can

be re-written as

P (y0 = 1, y1 = 0) + P (y1 = 0, y2 = 1) > P (y0 = 0, y1 = 0, y2 = 1) + P (y0 = 1)

The right-hand side of this inequality is less than one, so if the sign of � is identified under
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stationarity restriction (i.e. condition (9) in 4.2 holds), then the sign of � is also be identified

under the exchangeability restriction (condition (3) in 4.3 holds), but the reverse is not true.

When T = 3, it is sometimes possible to identify the sign of � even when � is positive

(unlike in T = 2 case). We start with stationarity Assumption 3.1: under that assumption,

the sharp identified set for � and � is given by Theorem 4.1. In the absence of covariates, this

result (in addition to the restrictions on � described above for T = 2) places the following

restrictions based on set ⇥{1,3}
I,stat:

(9) : P (y0 = 1, y1 = 0) + P (y2 = 0, y3 = 1) � 1 ) �  0

(10) : P (y0 = 0, y1 = 1) + P (y2 = 1, y3 = 0) � 1 ) �  0

(11) : P (y0 = 1, y1 = 1) + P (y2 = 0, y3 = 0) � 1 ) � � 0

(12) : P (y0 = 0, y1 = 0) + P (y2 = 1, y3 = 1) � 1 ) � � 0

(4.4)

and based on set ⇥{2,3}
I,stat:

(9) : P (y1 = 1, y2 = 0) + P (y2 = 0, y3 = 1) � 1 ) �  0

(10) : P (y1 = 0, y2 = 1) + P (y2 = 1, y3 = 0) � 1 ) �  0
(4.5)

Under the stationarity assumption, there’s still a possibility that the sign of � is not iden-

tified even if T = 3. However, this is no longer a case under the conditional exchangeability

assumption: with three time periods, we always can identify the sign of � by comparing

probabilities of di↵erent sequences of the three consecutive outcomes. For example:

P (y1 = 0, y2 = 0, y3 = 1|y0) 7 P (y1 = 0, y2 = 1, y3 = 0|y0) () � 7 0

Tables 4 and 5 in the Appendix provide a full set of identifying restrictions under Assumption

3.2 that is based on the result in Table 3.

5 Inference

Though the main contribution of the paper is the characterization of the identified sets in

these dynamic discrete choice models, we suggest an approach to inference that is computa-

tionally attractive under the assumption that the regressor vector x has finite support.
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All the identified sets in the paper use conditional choice probabilities of the form (as an

example)

P (y1 = 0, y2 = 1|y0, x) ⌘ p2(0, 1|y0, x)

P (y1 = 1, y2 = 0|y0, x) ⌘ p2(1, 0|y0, x)

P (y1 = 0, y2 = 0|y0, x) ⌘ p2(0, 0|y0, x)

The idea the inference section is to first construct a confidence region for the choice

probabilities above. Then, heuristically, a confidence region for the identified set can be

constructed by using draws from the (standard) confidence region for the choice probabili-

ties. The mechanics of this exercise exploits linear programs to check whether a particular

parameter vector ✓ belongs to the identified set. We describe this procedure in more details

next.

5.1 A Confidence Region for the Choice Probabilities

One way to construct a confidence region for ~p(y0, x) = (p2(0, 0|y0, x), p2(0, 1|y0, x), p2(1, 0|y0, x))0

is as follows. Let (y10, x
1), . . . , (yJ0 , x

J) denote the support of (y0, x). Then, as sample size

increases, we have

p
nW (~p(·)) ⌘

p
n

0
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( 1n
P

i ŵ
1,0
i (y10, x
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( 1n

P
i ŵ

0,1
i (y10, x
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( 1n

P
i ŵ

0,0
i (y10, x

1)� p2(0, 0|y10, x1))1{0 < p2(0, 0|y10, x1) < 1}
· · ·

( 1n
P

i ŵ
1,0
i (yJ0 , x

J)� p2(1, 0|yJ0 , xJ))1{0 < p2(1, 0|yJ0 , xJ) < 1}
( 1n

P
i ŵ

0,1
i (yJ0 , x

J)� p2(0, 1|yJ0 , xJ))1{0 < p2(0, 1|yJ0 , xJ) < 1}
( 1n

P
i ŵ

0,0
i (yJ0 , x

J)� p2(0, 0|yJ0 , xJ))1{0 < p2(0, 0|yJ0 , xJ) < 1}

1

CCCCCCCCCCCCA

) N(0,⌃(~p(·)))

where ⌃(~p(·)) is the variance-covariance matrix and

ŵds
i (y0, x) =

1{y1i = d, y2i = s, y0i = y0, xi = x}
p̂z(y0, x)

for d, s 2 {0, 1}
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and

p̂z(y0, x) =
1

n

X

i

1{y0i = y0, xi = x}

Note that some rows and columns of ⌃(~p(·)) may be zero, so in general this matrix can

be singular. Let ⌃⇤(~p(·)) be a sub-matrix of ⌃(~p(·)) that corresponds to all non-zero rows

and columns. Then ⌃⇤(~p(·)) has full rank. Let W ⇤(~p(·)) be a sub-vector of W (~p(·)) that

corresponds to those non-zero columns (rows). Then

p
nW ⇤(~p(·)) ) N (0,⌃⇤(~p(·)))

and

T as
n (~p(·) ⌘ nW ⇤(~p(·))0 (⌃⇤(~p(·)))�1 W ⇤(~p(·)) ) �2

q(~p(·))

where q(~p(·)) = dim(W ⇤(~p(·))).

Then, an asymptotic 100(1� ↵)% confidence set for ~p(y0, x):

CSp
1�↵ =

n
~p(y0, x) � 0 : for all (y0, x), p2(0, 0|y0, x) + p2(0, 1|y0, x) + p2(1, 0|y0, x)  1

and T as
n (~p(·))  c⇤1�↵(~p(·))

o

(5.1)

where c⇤1�↵(~p(·)) is the (1 � ↵) quantile of �2 distribution with q(~p(·)) = dim(W ⇤(~p(·)))
degrees of freedom (the number of probabilities in ~p(·) that are strictly between 0 and 1).

One way to obtain a draw from this confidence region is to use the weighted bootstrap

via a posterior distribution for these choice probabilities.

5.2 Confidence region for the identified set

We illustrate here how we map the CI for the choice probabilities to a CI for the identified set.

We do it in the context of two simple examples that we call the “Stationary Example” and

the “2-Exchangeability Example.” These two examples showcase the issues that come up in

a clean way. Let the parameter of interest ✓ = (�, �) and consider the following examples:
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“Stationarity Example”:

P (y1 = 1|y0, x) � P (y2 = 1|y0, x) ) �x0� +min{0, �}� �y0  0

P (y1 = 1|y0, x)  P (y2 = 1|y0, x) ) �x0� +max{0, �}� �y0 � 0

P (y1 = 0, y2 = 1|y0, x) � P (y1 = 1|y0, x) ) �x0� � �y0 � 0

P (y1 = 1, y2 = 0|y0, x) � P (y1 = 0|y0, x) ) �x0� + �(1� y0) � 0

(5.2)

“2-Exchangeability Example”:

��x0� + �y0 � 0

��x0� + �y0 � � � 0

)
) P (y1 = 1, y2 = 0|x, y0) � P (y1 = 0, y2 = 1|x, y0)

��x0� + �y0  0

��x0� + �y0 � �  0

)
) P (y1 = 1, y2 = 0|x, y0)  P (y1 = 0, y2 = 1|x, y0)

(5.3)

where at least one strict inequality on the left-hand side implies a strict inequality on the

right-hand side (in both examples).

There is an important qualitative di↵erence between the two “toy” models above: in the

Stationary model, there is one sided inequalities and all the parameters that satisfy these

implications for all (y0, x). On the other hand, in the Exchangeable model, two conditions

have to be satisfied for the implication to hold (notice the “and” in the implication) and

that makes the implementation di↵erent. We explain this in details next.

Generally, a CI for the identified sets in both models above can simply be defined as

follows and are based on the chi-squared approximation above. The confidence set for ✓ =

(�, �) based on asymptotic chi-squared approximation:

CS✓
1�↵ = {✓ 2 ⇥ : conditions (5.2) and (5.3) hold for some ~p(·) 2 CSp

1�↵}

where CSp
1�↵ is defined in (5.1) above. It is computationally tedious to check whether the

inequalities above are satisfied for a given vector of choice probabilities. However, it is

possible to exploit the linearity in the model as follows.
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5.2.1 Linear Program for solving Model (5.2):

Conditions (5.2) are straightforward to verify for a given ~p(·) 2 CSp
1�↵. The following is an

algorithm to build a CS based on a linear program.

(i) Pick an element ~p(k)(·) from CSp
1�↵. Alternatively, use the Bayesian bootstrap to get a

draw ~p(k)(·) from the “posterior”. This can be done instantaneously by exploiting the

Dirichlet prior approach in multinomials8.

(ii) Get ⇥+
(k), the set of parameters ✓ that solve

max
(�,�)2⇥

c+ 0 · � + �0 · 0

subject to

Mp(x, �, �) =

2

6666666666666666666666666666664

�

1{P(k)(y1 = 1|y10, x1) � P(k)(y2 = 1|y10, x1)}(��x10� + �y10)

1{P(k)(y1 = 1|y10, x1)  P(k)(y2 = 1|y10, x1)}(�x10� + �(1� y10))

1{P(k)(y1 = 0, y2 = 1|y10, x1) � P(k)(y1 = 1|y10, x1)}(�x10� � �y10)

1{P(k)(y1 = 0, y2 = 1|y10, x1)  P(k)(y1 = 1|y10, x1)}(�x10� + �(1� y10))

1{P(k)(y1 = 1|y20, x2) � P(k)(y2 = 1|y20, x2)}(��x20� + �y20)

1{P(k)(y1 = 1|y20, x2)  P(k)(y2 = 1|y20, x2)}(�x20� + �(1� y20))

1{P(k)(y1 = 0, y2 = 1|y20, x2) � P(k)(y1 = 1|y20, x2)}(�x20� � �y20)

1{P(k)(y1 = 0, y2 = 1|y20, x2)  P(k)(y1 = 1|y20, x2)}(�x20� + �(1� y20))

. . .

1{P(k)(y1 = 1|yJ0 , xJ) � P(k)(y2 = 1|yJ0 , xJ)}(��xJ 0
� + �yJ0 )

1{P(k)(y1 = 1|yJ0 , xJ)  P(k)(y2 = 1|yJ0 , xJ)}(�xJ 0
� + �(1� yJ0 ))

1{P(k)(y1 = 0, y2 = 1|yJ0 , xJ) � P(k)(y1 = 1|yJ0 , xJ)}(�xJ 0
� � �yJ0 )

1{P(k)(y1 = 0, y2 = 1|yJ0 , xJ)  P(k)(y1 = 1|yJ0 , xJ)}(�xJ 0
� + �(1� yJ0 ))

3

7777777777777777777777777777775

� 0

(iii) Similarly, get ⇥�
(k), the set of parameters ✓ that solve

max
(�,�)2⇥

c+ 0 · � + �0 · 0

subject to

8See Chamberlain and Imbens (2003) for an example of the Bayesian Bootstrap in the context of moment
condition models.
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Mn(x, �, �) =

2

6666666666666666666666666666664

��

1{P(k)(y1 = 1|y10, x1) � P(k)(y2 = 1|y10, x1)}(��x10� + �(y10 � 1))

1{P(k)(y1 = 1|y10, x1)  P(k)(y2 = 1|y10, x1)}(�x10� � �y10)

1{P(k)(y1 = 0, y2 = 1|y10, x1) � P(k)(y1 = 1|y10, x1)}(�x10� � �y10)

1{P(k)(y1 = 0, y2 = 1|y10, x1)  P(k)(y1 = 1|y10, x1)}(�x10� + �(1� y10))

1{P(k)(y1 = 1|y20, x2) � P(k)(y2 = 1|y20, x2)}(��x20� + �(y20 � 1))

1{P(k)(y1 = 1|y20, x2)  P(k)(y2 = 1|y20, x2)}(�x20� � �y20)

1{P(k)(y1 = 0, y2 = 1|y20, x2) � P(k)(y1 = 1|y20, x2)}(�x20� � �y20)

1{P(k)(y1 = 0, y2 = 1|y20, x2)  P(k)(y1 = 1|y20, x2)}(�x20� + �(1� y20))

. . .

1{P(k)(y1 = 1|yJ0 , xJ) � P(k)(y2 = 1|yJ0 , xJ)}(��xJ 0
� + �(yJ0 � 1))

1{P(k)(y1 = 1|yJ0 , xJ)  P(k)(y2 = 1|yJ0 , xJ)}(�xJ 0
� � �yJ0 )

1{P(k)(y1 = 0, y2 = 1|yJ0 , xJ) � P(k)(y1 = 1|yJ0 , xJ)}(�xJ 0
� � �yJ0 )

1{P(k)(y1 = 0, y2 = 1|yJ0 , xJ)  P(k)(y1 = 1|yJ0 , xJ)}(�xJ 0
� + �(1� yJ0 ))

3

7777777777777777777777777777775

� 0

(iv) Repeat steps (i)-(iii) above for k = 1, . . . ,M .

(v) A (1� ↵) CS for ✓ would be the
⇣
\kM⇥+

(k)

⌘
[
⇣
\kM⇥�

(k)

⌘

The computationally tedious part in the above linear program is part (ii) which builds the

set of all ✓’s for which the linear program is feasible. One approach for this is to get a grid

for ✓ and check whether each point on this grid is feasible.

But, one computationally trivial approach and the approach we recommend is to target

linear functionals of (�, �), such as any scalar subvector like �1, or � or generally l0

"
�

�

#
.

For example, to get the identified set (interval in this case) for �, one can use the following

linear program for � positive:

max / min
(�,�)2⇥

�

subject to Mp(x, �, �) � 0

and for � negative:

max / min
(�,�)2⇥

�

subject to Mn(x, �, �) � 0

Then, take the union of the two intervals. This approach is simple and easy to implement
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especially if the vector � is of high dimensions.

5.2.2 Linear Program for solving Model (5.3)

Now, building a CS for ✓ in the exchangeable model of (5.3) is more complicated since

checking that both ��x0� + �y0 � 0 and ��x0� + �y0 � � � 0 renders the program

nonlinear. However, here, notice that the inequalities (5.3) are equivalent to (notice the

“and” became an “or”)

P (y1 = 1, y2 = 0|y0, x)  P (y1 = 0, y2 = 1|y0, x) ) �x0� � �y0 � 0 or �x0� + �(1� y0) � 0

P (y1 = 1, y2 = 0|y0, x) � P (y1 = 0, y2 = 1|y0, x) ) �x0� � �y0  0 or �x0� + �(1� y0)  0

that is, any ✓ that belongs to the compliment of the set below belongs to the identified set:

P (y1 = 1, y2 = 0|y0, x)  P (y1 = 0, y2 = 1|y0, x) ) �x0� � �y0 < 0 and �x0� + �(1� y0) < 0

P (y1 = 1, y2 = 0|y0, x) � P (y1 = 0, y2 = 1|y0, x) ) �x0� � �y0 > 0 and �x0� + �(1� y0) > 0

This can be posed as the constraints in a linear program and so checking whether ✓ is feasible

(here belongs to the complement of the identified set) is equivalent to checking the feasibility

of a linear program. For a given p(k) draw of the vector of choice probabilities, checking

whether a parameter is feasible can be done for example using the following program:

max
(�,�)2⇥

c+ 0 · � + �0 · 0

subject to
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8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

1{P(k)(y1 = 1, y2 = 0|y10, x1)  P(k)(y1 = 0, y2 = 1|y10, x1)}(�x10� � �y10)  0

1{P(k)(y1 = 1, y2 = 0|y10, x1)  P(k)(y1 = 0, y2 = 1|y10, x1)}(�x10� + �(1� y10))  0

1{P(k)(y1 = 1, y2 = 0|y10, x1) � P(k)(y1 = 0, y2 = 1|y10, x1)}(�x10� � �y10) � 0

1{P(k)(y1 = 1, y2 = 0|y10, x1) � P(k)(y1 = 0, y2 = 1|y10, x1)}(�x10� + �(1� y10)) � 0

. . .

1{P(k)(y1 = 1, y2 = 0|yJ0 , xJ)  P(k)(y1 = 0, y2 = 1|yJ0 , xJ)}(�xJ 0
� � �yJ0 )  0

1{P(k)(y1 = 1, y2 = 0|yJ0 , xJ)  P(k)(y1 = 0, y2 = 1|yJ0 , xJ)}(�xJ 0
� + �(1� yJ0 ))  0

1{P(k)(y1 = 1, y2 = 0|yJ0 , xJ) � P(k)(y1 = 0, y2 = 1|yJ0 , xJ)}(�xJ 0
� � �yJ0 ) � 0

1{P(k)(y1 = 1, y2 = 0|yJ0 , xJ) � P(k)(y1 = 0, y2 = 1|yJ0 , xJ)}(�xJ 0
� + �(1� yJ0 )) � 0

Hence, we can then use the same algorithm as above by repeatedly drawing a vector of

choice probabilities from the confidence ellipse and then collecting all the parameters that

solve the above program for at least one of these draws. The closure of the complement of

this set will give us a well defined confidence set for the identified set.

Here too if one is interested in a scalar parameter (such as �, a subvector of � or a linear

combination of (�, �)), one can directly minimize and maximize that linear functional subject

to the constraints above. This is simple to do and obviates the need to computationally

obtain the set of feasible parameters for every draw from the CI for the choice probabilities.

6 Finite Sample Properties

We first illustrate the finite sample properties using a limited empirical illustration. We then

provide a set of simulated identified sets to showcase the identifying power of the various

assumptions and how this changes with the support of the regressors.

6.1 Empirical Illustration

The Panel Data forWomen0sLabor Force Participation contains data on N=5663 married

women over T = 5 periods, where the periods are spaced four months apart. The response

variable lfpit is a binary indicator for labor force participation. The key explanatory variables

we use are kidsit (number of children under 18) and lhincit=log(hincit), where husband’s
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income, hincit, is in dollar per month and is positive for all i and t. There are also time-

constant variables educ, black,age and agesq, these variables are dropped out when using

fixed e↵ects estimators.

In the following analysis, a binary version of lhincit and kidsit, newlhincit and newkidsit

respectively, enter regressions as explanatory variables. These are defined as:

newkidsit =

(
0, lhincit = 0 or 1,

1, lhincit > 1.
(6.1)

newlhincit =

(
0, lhincit  Median (lhinct),

1, lhincit > Median (lhinct).
(6.2)

We also use 3 time periods. A table of brief descriptive statistics is provided below.

Table 1: Summary Statistics

obs mean sd min max
lfp 16989 .6812643 .466 0 1
newkids 16989 .4139737 .4925584 0 1
newlhinc 16989 .4997351 .5000146 0 1

We compare our estimates to three dynamic models. First, we use two random e↵ects

Probit: the reprobit where the random e↵ect is mean zero and independent of the regressors,

and another reprobitci where the random e↵ect is a function of the vector of covariates at

all time periods. The third model is the dynamic Logit FE model of Honoré and Kyriazidou

(2000). Table 2 reports the estimates along with confidence regions. The FE logit model

uses the following conditional likelihood

nX

i=1

1[xi2 = xi3]1[yi1 6= yi2]⇥ log

✓
exp((xi1 � xi2)

0
b+ g(yi0 � yi3))yi1

1 + exp((xi1 � xi2)
0b+ g(yi0 � yi3))

◆
(6.3)

We found that the above objective function was easy to optimize and is robust to starting

values. On the other hand, the last column provides our estimate of the identified set for

scalar parameters along with a confidence region that covers the identified set with 95%

probability.

Implementation Via Linear Program: To implement the procedure described in the
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inference section above and obtain a confidence region, we require that one obtains draws

from the confidence region of the choice probabilities in (5.1) above. One computationally

automatic way to get such draws is to use the Bayesian bootstrap which is equivalent to

drawing from the posterior distribution of a multinomial with the usual Dirichlet priors9.

For each draw from this posterior, we solve the linear program for min /max of the scalar

a = l0(�, �). This allows us to get CIs for every scalar component of the parameter vector for

example, including10 �. Using 1000 draws from the posterior of the choice probabilities, we

obtain 1000 copies of the identified set. Then, we report in the table below the smallest set

that contains 95% of the intervals. This procedure is simple to compute even with thousands

of inequalities.

Table 2: Dynamic Models: RE, Logit FE (HK), Stationary FE/T=2 using Linear Programs

(1) (2) (3) (4)
reprobit reprobitci HK Logit FE Stationary FE - Tolerance =0

newkids -0.139 -0.443 -.063 -.5
(0.037) (0.214) (.374)

newlhinc -0.161 -0.150 -.273 [.5, 3]
(0.036) (0.095) (.72) [�.5, 3.2]

lag lfp 2.475 1.163 2.331 [.5, 3.1]
(0.034) (0.134) (.53) [�.2, 3.2]

Notice here that consistently across all the models, the � coe�cient appears positive. In

the Stationary model, we fix the parameter on newkids to �.5 for normalization11 and it is

clear that the other parameter is not significant.

6.2 Simulation Results

In this section we conduct an extensive simulation study to explore how well our theoretical

conclusions in previous sections hold up in simulated data. Our theoretical results were

9In cases when the regressors have many support points, one can use a “reduced form” estimator for the
choice probabilities such as a multinomial logit and use that model to get draws from its posterior predictive
distribution.

10It may be that with real data, the set of inequalities that define the stationary set does not have
a nonempty interior. In this case, we first add a tolerance parameter t to each inequality (so now the
inequalities are less than a positive t rather than less then 0), and in the first pass through the linear
program we minimize t subject to the constraints that define the problem (optimizing over (�,�)) to obtain
a feasible tolerance t⇤. Then, we fix the tolerance at t⇤ when computing the confidence set. In our data
setup, we obtained a tolerance t⇤ = 0.

11We normalized at the point estimates from the random e↵ects probit model.
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mainly tied to establishing the empirical content of varying assumptions in dynamic binary

choice models.

In establishing our theoretical results we reached the following conclusions regarding

identifying the structural parameters in the model:

• Regression coe�cients on strictly exogenous variables were generally easier to identify

than the coe�cient on the lagged binary dependent variable, which was our measure

of the persistence in the model.

• Restricting dependence structure on the idiosyncratic components of the model facili-

tated identification of the structural parameters.

• Increasing the richness of the support of the exogenous variables facilitates the identi-

fication.

• Increasing the length of the time series added informational content, as structural

parameters could be identified under weaker conditions.

• The value of the parameters themselves could e↵ect their identifiability. For example,

it was shown that a negative value of the persistence parameter made its identification

more di�cult.

We will illustrate these results by simulating data from the following model:

yit = I{uit  vit + xit� + �yi,t�1 + ↵i} i = 1, 2, ...10000; t = 0, 1, ...T (6.4)

yit is the observed binary dependent variable and yi,t�1 is its lagged value. vit, xit are each

observed scalar exogenous variables, the first whose coe�cient is normalized to 1, and the

second, whose coe�cient � we aim to identify, along with persistence parameter �. ↵i, a

scalar, denotes the unobserved individual specific e↵ect and uit denotes the unobserved scalar

idiosyncratic term. The simulation exercise explores identification of �, � under varying

models, corresponding di↵erent values of T , di↵erent assumptions on uit, varying support

conditions on (vit, xit), and di↵erent values of �. As will be explained below, this will

correspond to 64 di↵erent designs and for each we demonstrate graphically the nature of the

identified region of the structural parameters �, �.
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We demonstrate identification graphically with projections of three dimensional plots of

our objective function. Specifically we look at values of the objective function of di↵erent

values of � and � along a grid of a two dimensional plane. Instead of constructing three

dimensional plots, we show values of the parameters which attain the global maximum of the

objective function. The objective functions used corresponded to the moment inequalities

used in the main theorems. In models where point identification is attainable, a single value

will be in the plot, whereas in partially identified models, a subset of the grid will be plotted.

6.2.1 Stationary Model, T=2

In this model we simulated data where vit, xit were each discretely distributed, with the

number of support points for vit, increasing from 2 to 7, and then continuously (standard

normal) distributed. The number of support points for xit was always two, though there

where two distinct designs- one with identical support in each time period, and the other

with strictly nonoverlapping support- xit = t t = 1, 2. The idiosyncratic terms uit were

bivariate normal, mean 0 variance 1, correlation 0.5, and the fixed e↵ect ↵i was standard

normal. We assumed that all variables were mutually independent. The parameters where

set to 1 for � and either 0.5 or -0.5 for �.

Our plots for this model agree with our theoretical results. We note that when xit, vit

are discrete, neither parameter is point identified. For example, in Figure 2, we have x is

binary while v starts out as binary and then we add points of support ending with 14. This

Figure is repeated for when true � is negative. As we can see the identified set is not trivial.

Its size shrinks in Figure 4 when v is normally distributed with increasing variance. Notice

here that in all the plots, � appears well identified.

In Figure 6, we change x to a time trend (x = t) and in the top lhs plot, we have the

identified set in the case when v is binary. Here, we cannot pin down the sign of �. But, as

we increase the points of support for v, the identified set shrinks and eventually it appears

that the sign of � is identified. The same story holds for when � is negative. The next

Figures allow for time trend in the case when v is normal.

Throughout, when vit is continuously distributed, � is point identified, whereas � is not.

But the graph clearly demonstrates that its sign is.
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6.2.2 Exchangeability Model, T=2

Here we construct plots for the objective function based on the exchangeability assumption.

Starting with Figure 10 we see that the model contains information with both x and v

being binary, and that the identified set in this case is smaller than the one in Figure 2

under stationarity. What is more interesting here is Figure 12 where we get essentially point

identification of both � and � when v is standard normal. The identified set here shrinks to

a point (up to numerical error) as the variance of v increases. The same story does not hold

for the case when true � is negative as confirmed in Figure 13. When � is positive, even

when x is a time trend, we get tight identified sets for � and � when v is normal as can

be seen in Figure 15 which is remarkable and points to the strength of the exchangeability

assumption.

Now we see that when vit is continuously distributed both � and � are point identified

when � = 0.5. However, only � is point identified when � = �0.5, though we can see

from the graph that it is negative. This agrees with all our theoretical conclusions from the

exchangeability section of the paper.

6.2.3 Stationary Model, T=3

Here we simulated data with an extra time period, maintaining the stationarity assumption,

so that uit was trivariate normal with pairwise correlations of 0.25. The graphs now demon-

strate that both � and � will be point identified when even when � is negative and xt = t.

This matches up with our theoretical conclusion that point identification can be achieved

with all of nonoverlapping support, serial correlation and state dependence. In Figure 16

we provide the identified sets for a few designs. In the top, the two designs correspond to

the case when xt = t and v is discrete (top left) and when v is standard normal (top right).

The bottom of the figure plots the case when v is normal (variance 1 on the left and 2.5 on

the right).

6.2.4 Exchangeability Model, T=3

Here we graphed the objective function based on the exchangeability assumption and T = 3.

It demonstrates we can achieve point identification of � even when � = �0.5. This was also
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the case when there was strictly nonoverlapping support conditions on xit. In particular,

Figure 17 shows that the identified set is essentially a point when v is normal, but � is not

point identified when both v and x are discrete.

7 Conclusion

This paper analyzes the identification of slope parameters in panel binary response models

with lagged dependent variables under minimal assumptions. In particular, we consider sta-

tionarity and exchangeability and characterize the identified set under these two restrictions

without making any assumptions on the fixed e↵ect. We show that the characterization

yields the sharp set. In addition, we provide su�cient conditions for point identification

even in models that have time trends as regressors, which is ruled out in Honoré and Kyri-

azidou (2000). The analysis is interesting and highlights the interplay between the strength

of the assumptions, the number of time periods and the support of the exogenous regressors.

Overall, we generalize many existing results for this model in interesting directions.
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Honoré, B., and E. Kyriazidou (2000): “Panel Data Discrete Choice Models with

Lagged Dependent Variables,” Econometrica, 68, 839–874.

(2019): “Identification In Binary Response Panel Data Models: Is Point-

Identification More Common Than We Thought?,” working paper.
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Honoré, B., and E. Tamer (2006): “Bounds on Parameters in Panel Dynamic Discrete

Choice Models,” Econometrica, 74, 611–629.

Illanes, G. (2016): “Switching Costs in Pension Plan Choice,” Unpublished manuscript.

Ketcham, J. D., C. Lucarelli, and C. A. Powers (2015): “Paying attention or paying

too much in Medicare Part D,” American Economic Review, 105(1), 204–33.

Khan, S., M. Ponomareva, and E. Tamer (2011): “Sharpness in Randomly Censored

Linear Models,” Economic Letters, 113, 23–25.

(2016): “Identification of Panel Data Models with Endogenous Censoring,” Journal

of Econometrics, 94, 57–75.

Konstantopoulos, T., and L. Yuan (2018): “On the Extendibility of Finitely Ex-

changeable Probability Measures,” Transactions of the American Mathematical Society,

10(371), 7067–7092.

Manski, C. F. (1985): “Semiparametric Analysis of Discrete Response: Asymptotic Prop-

erties of the Maximum Score Estimator,” Journal of Econometrics, 27(3), 313–33.

Manski, C. F. (1987): “Semiparametric Analysis of Random E↵ects Linear Models from

Binary Panel Data,” Econometrica, 55(2), 357–362.

Merlo, A., and K. I. Wolpin (2008): “The transition from school to jail: Youth crime

and high school completion among black males,” .

Olshen, R. (1973): “A Note on Exchangable Sequences,” Technical Report No 79, Depart-

ment of Statistics, Stanford University.

47



Ouyang, F., S. Khan, and E. Tamer (2017): “Identification and Estimation of Dynamic

Panel Data Multinomial Response Models,” working paper, Duke University.

Pakes, A., and J. Porter (2014): “Moment Inequalties for Multinomial Choice with

Fixed E↵ects,” Harvard University Working Paper.

Polyakova, M. (2016): “Regulation of insurance with adverse selection and switching

costs: Evidence from Medicare Part D,” American Economic Journal: Applied Economics,

8(3), 165–95.

Raval, D., and T. Rosenbaum (2018): “Why Do Previous Choices Matter for Hospi-

tal Demand? Decomposing Switching Costs from Unobserved Preferences,” Review of

Economics and Statistics, forthcoming.

Shi, X., M. Shum, and W. Song (2018): “Estimating Semi-Parametric Panel Multinomial

Choice Models Using Cyclic Monotonicity,” Econometrica, 86(2), 737–761.

Torgovitsky, A. (2016): “Nonparametric inference on state dependence with applications

to employment dynamics,” working paper, University of Chicago.

Yang, J., Y. Qi, and R. Wang (2009): “A Class of Multivariate Copulas with Bivariate
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A Figures

Figure 2: Stationary with T = 2 and Discrete Support with � = .5
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Figure 3: Stationary with T = 2 and Discrete Support with � = .5
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Figure 4: Stationary with T = 2 and Normal v with � = .5
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Figure 5: Stationary with T = 2 and Normal v with � = �.5
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Figure 6: Stationary with T = 2 and Time Trend and Discrete Support for v with � = .5

53



Figure 7: Stationary with T = 2 and Time Trend and Discrete Support for v with � = �.5
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Figure 8: Stationary with T = 2 and Time Trend and Normal v with � = .5
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Figure 9: Stationary with T = 2 and Time Trend and Normal v with � = �.5
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Figure 10: Exchangeability with T = 2 Discrete Support for v with � = .5
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Figure 11: Stationary with T = 2 Discrete Support for v with � = �.5
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Figure 12: Exchangeability with T = 2 Discrete v with � = .5
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Figure 13: Stationary with T = 2 Normal for v with � = �.5
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Figure 14: Exchangeability with T = 2 x = t Discrete v with � = .5
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Figure 15: Stationary with T = 2, x = t Normal for v with � = .5
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Figure 16: Stationarity with T=3: Various Designs
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Figure 17: Exchangeability with T=3: Various Designs
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B Proof

B.1 Proof of Lemma 3.1

Since (u�M , . . . , u0, u1, . . . , uT ) is exchangeable conditional on ↵, x�M , . . . , x0, x1, . . . , xT , The-

orem 3 in Olshen (1973) implies that there exists a random variable ⇠ such that error terms

u�M , . . . , u0, u1, . . . , uT are i.i.d. conditional on ⇠,↵, x�M , . . . , x0, x1, . . . , xT . In turn, this

implies that u1, . . . , uT are i.i.d. conditional on ⇠,↵, u�M , . . . , u0, x�M , . . . , x0, x1, . . . , xT . In

particular, for any (a1, . . . , aT ) 2 RT , we have

P (u1  a1, . . . , uT  aT |⇠,↵, u�M , . . . , u0, x�M , . . . , x0, x1, . . . , xT ) =

P (us1  a1, . . . , usT  aT |⇠,↵, u�M , . . . , u0, x�M , . . . , x0, x1, . . . , xT )

where {s1, . . . , sT} is an arbitrary permutation of {1, . . . , T}. Integrating ⇠ out we get

P (u1  a1, . . . , uT  aT |↵, u�M , . . . , u0, x�M , . . . , x0, x1, . . . , xT ) =

= P (us1  a1, . . . , usT  aT |↵, u�M , . . . , u0, x�M , . . . , x0, x1, . . . , xT )
(B.1)

Since there’s a beginning M periods back, we are able to write y0 as a function of

↵, x�M , . . . , x0, u�M , . . . , u0 only. Applying the LIE we get:

P (us1  a1, . . . , usT  aT |↵, y0, x1, . . . , xT ) =

LIE
= E (P (us1  a1, . . . , usT  aT |↵, u�M , . . . , u0, x�M , . . . , x0, x1, . . . , xT )|↵, y0, x1, . . . , xT )

= E(P (u1  a1, . . . , uT  aT |↵, u�M , . . . , u0, x�M , . . . , x0, x1, . . . , xT )|↵, y0, x1, . . . , xT )

LIE
= P (u1  a1, . . . , uT  aT |↵, y0, x1, . . . , xT )

where the second equality follows from B.1. That is, distribution of (u1, . . . , uT ) and the

distribution of (us1 , . . . , usT ) are identical conditional on ↵, x, y0. ⌅

B.2 Proof of Theorem 3.1

Let v1 = u1�↵ and v2 = u2�↵. Note that u1 and u2 are identically distributed conditional

on x and ↵ if and only if v1 and v2 are also identically distributed conditional on x and ↵.

This implies that v1 and v2 must be identically distributed conditional on x, so let F (·|x)
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be the marginal distribution of vt for t = 1, 2, conditional on x. The following are sharp

restrictions on F (·|x): for v1 = u1 � ↵ we have

F (x0
1� +min{0, �})  P (y1 = 1|x)

P (y1 = 1|x) F (x0
1� +max{0, �})

P (y0 = 1, y1 = 1|x) F (x0
1� + �|x)

F (x0
1� + �|x)  1� P (y0 = 1, y1 = 0|x)

P (y0 = 0, y1 = 1|x) F (x0
1�|x)

F (x0
1�|x)  1� P (y0 = 0, y1 = 0|x)

and for v2 = u2 � ↵ we have:

F (x0
2� +min{0, �})  P (y2 = 1|x)

P (y2 = 1|x) F (x0
2� +max{0, �})

P (y1 = 1, y2 = 1|x) F (x0
2� + �|x)

F (x0
2� + �|x)  1� P (y1 = 1, y2 = 0|x)

P (y1 = 0, y2 = 1|x) F (x0
2�|x)

F (x0
2�|x)  1� P (y1 = 0, y2 = 0|x)

Under conditional stationarity, the model provides no other restrictions on the shape of

F (·|x). The rest of the proof closely follows the proof of sharpness of ⇥{1,2}
I,cex in Lemma 3.3

below with the following copula equations that match conditional probabilities of observed

outcomes for j = 0, 1:

C̃(P (y0 = j|x), q̃1j(x)|x) =P (y0 = j, y1 = 1|x)

C̃(P (y0 = 0|x), q̃1j(x), q̃21(x)|x) =P (y0 = j, y1 = 1, y2 = 1|x)

C̃(P (y0 = 0|x), q̃1j(x), q̃20(x)|x) =C̃(P (y0 = j|x), 1, q̃20(x)|x)

� P (y0 = j, y1 = 0, y2 = 1|x)

where

q̃1j(x) = P (ṽ1  x1�̃ + �̃j|x) ⌘ F̃ (x1�̃ + �̃j|x)

q̃2j(x) = P (ṽ2  x2�̃ + �̃j|x) ⌘ F̃ (x2�̃ + �̃j|x)
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and F̃ (·|x) is the conditional distribution of some ṽt. Let ↵̃ be some scalar random variable

(or even a constant), and define ũt = ṽt + ↵̃. Then ũ1 and ũ2 are identically distributed

conditional on x and ↵̃, and with ỹ0 = y0, the joint distribution of {x, ỹ0, ỹt = 1{ũ1 
�̃xt+ �̃ỹt�1+ ↵̃, t = 1, 2} matches the distribution of observables. That is, for any ✓̃ 2 ⇥{1,2}

I,stat

we are able to find some distribution G of (ũ1, ũ2, ↵̃) such that p(d, x|✓, F ) = p(d, x|✓̃, G)

and where ũ1 � ↵̃ and ũ2 � ↵̃ are identically distributed conditional on y0, x with marginal

distribution F̃ . That is, ✓
o.e.⇠F ✓̃ under stationarity assumption.

The rest of the proof relies on the identification result for conditional exchangeability

(Theorem 3.2), but without the requirement that the trivariate copula C̃(q0, q2, q2) must be

symmetric. ⌅

Proof of Proposition 3.2: Event (u1  ↵ + x0
1� + �y0, u2 > ↵ + x0

2� + �) implies that

u1 � u2  (x1 � x2)0� + �(y0 � 1). That is,

P (y1 = 1, y2 = 0|↵, x, y0)  P (u1 � u2  (x1 � x2)
0� + �(y0 � 1)|↵, x, y0)

Integrating ↵ out, we get

P (y1 = 1, y2 = 0|x, y0)  P (u1�u2  (x1�x2)
0�+�(y0�1)|x, y0) = F12((x1�x2)

0�+�(y0�1))

where F12(·) is the cdf of u1 � u2 and the last equality follows from the fact that u1 � u2 is

independent from (x, y0). So, the following inequality that must hold for any x and y0 in the

support:

P (y1 = 1, y2 = 0|x, y0)  F12((x1 � x2)
0� + �(y0 � 1))

Similarly, we can show that

P (y1 = 0, y2 = 1|↵, x, y0)  P (u1 � u2 > (x1 � x2)
0� + �y0|↵, x, y0)

so that we have the following:

F12((x1 � x2)
0� + �y0)  1� P (y1 = 0, y2 = 1|x, y0)
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To sum up, for all x, y0 in the support we have the following:

P (y1 = 1, y2 = 0|x, y0)  F12((x1 � x2)
0� + �(y0 � 1))

F12((x1 � x2)
0� + �y0)  1P (y1 = 0, y2 = 1|x, y0)

Conditions (1) and (2) immediately follow from the fact that F12(·) is a strictly increasing

function. ⌅

B.3 Proof of Theorem 3.3

We establish our conclusions sequentially. We first show �̃ is point identified without having

established point identification for �̃. Next we explore identification for �̃, assuming that �̃

is point identified. For this, we will first show the sign of �̃ is identified. Then, assuming the

sign of �̃ is known, we show its magnitude generally cannot be identified. To show the first

result, suppose that �̃ 6= �� for any � > 0. Note that in this case, conditions PID � Stat1

and PID�Stat2 in Assumption 3.4 imply that P (sign(�x�̃) 6= sign(�x�)|x 2 X7\X8) > 0

(see Lemma 2 in Manski (1985)). That is, there exist a subset of X7\X8 (that has a positive

probability measure) where sign(�x�̃) 6= sign(�x�). For example, let x⇤ 2 X7 \X8 be such

that �x⇤�̃ > 0 and �x⇤� < 0. Since x⇤ belongs to the union of X7 and X8 and �x⇤� < 0,

Theorem 3.1 implies that it must be that P (y0 = 1, y1 = 1|x⇤) + P (y1 = 1, y2 = 0|x⇤) > 1

holds, which in turn rules out any �̃ such that �x⇤�̃ > 0. Similar argument applies if

�x⇤�̃ < 0 abut �x⇤� > 0. Note that the above reasoning does not work when �̃ = �� for

some � > 0, so � is point identified (only up to scale) on X7 \ X8 under Assumption 3.4.

With � identified we can turn attention to the point identification of �. We first establish
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when the sign of � can be identified. First note that if � � 0, then Theorem 3.1 implies that

�X1 ✓ {�x 2 Rk : �x� + � > 0}

�X2 ✓ {�x 2 Rk : �x� � � < 0}

�X3 ✓ {�x 2 Rk : �x� > 0}

�X4 ✓ {�x 2 Rk : �x� < 0}

�X5 ✓ {�x 2 Rk : �x� + � > 0}

�X6 ✓ {�x 2 Rk : �x� � � < 0}

�X7 ✓ {�x 2 Rk : �x� > 0}

�X8 ✓ {�x 2 Rk : �x� < 0}

�X9 ✓ {�x 2 Rk : �x� � � > 0}

�X10 ✓ {�x 2 Rk : �x� + � < 0}

So if (�X1 [ �X5) \ �X10 6= ? or (�X2 [ �X6) \ (�X9) 6= ? or �X3 \ �X8 6= ? or

�X4 \�X7 6= ?, then � cannot be non-negative.

Similarly, if �  0, then we have (from Theorem 3.1)

�X1 ✓ {�x 2 Rk : �x� � � > 0}

�X2 ✓ {�x 2 Rk : �x� + � < 0}

�X3 ✓ {�x 2 Rk : �x� � � > 0}

�X4 ✓ {�x 2 Rk : �x� + � < 0}

�X5 ✓ {�x 2 Rk : �x� > 0}

�X6 ✓ {�x 2 Rk : �x� < 0}

�X7 ✓ {�x 2 Rk : �x� > 0}

�X8 ✓ {�x 2 Rk : �x� < 0}

�X9 ✓ {�x 2 Rk : �x� � � > 0}

�X10 ✓ {�x 2 Rk : �x� + � < 0}

So if �X5 \�X8 6= ? or �X6 \�X7 6= ?, then � cannot be non-positive. Finally, if � both

cannot be positive or negative, it has to be zero (so it’s point identified).

Finally, result in part (4) follows directly from Theorem 3.1. ⌅
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B.4 Proof of Theorem 3.4

The proof of point identification of � follows closely the proof of a similar result for sta-

tionarity ( Theorem 3.3). The identification result for � follows from noticing that when

� � 0:

�X1(y0) ✓ {�x 2 Rk : �x0� � �y0 < 0}

�X2(y0) ✓ {�x 2 Rk : �x0� + � � �y0 > 0}

�X3(y0) ✓ {�x 2 Rk : �x0� � �y0 > 0}

�X4(y0) ✓ {�x 2 Rk : �x0� + � � �y0 < 0}

Similarly, if �  0:

�X1(y0) ✓ {�x 2 Rk : �x0� + � � �y0 < 0}

�X2(y0) ✓ {�x 2 Rk : �x0� � �y0 > 0}

�X3(y0) ✓ {�x 2 Rk : �x0� � �y0 > 0}

�X4(y0) ✓ {�x 2 Rk : �x0� + � � �y0 < 0}

The rest follows from arguments similar to the ones used to prove Theorem 3.3. ⌅

B.5 Proof of Theorem 4.1

This proof closely follows the proof of Theorem 3.1, with the addition of the following sharp

restrictions on the marginal distribution of v3 = u3 � ↵ (conditional on x and ↵):

F (x0
3� +min{0, �})  P (y3 = 1|x)

P (y3 = 1|x) F (x0
3� +max{0, �})

P (y2 = 1, y3 = 1|x) F (x0
3� + �|x)

F (x0
3� + �|x)  1� P (y2 = 1, y3 = 0|x)

P (y2 = 0, y3 = 1|x) F (x0
3�|x)

F (x0
3�|x)  1� P (y2 = 0, y3 = 0|x)

Combining these restrictions with restrictions for v1 and the conditional stationarity as-

sumption gives us ⇥{1,3}
I,stat; and ⇥{2,3}

I,stat is obtained by combining these restrictions with the
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restrictions for v2. In particular, ⇥{2,3}
I,stat is given by the restrictions: if for some x,

(1) P (y3 = 1|x) � P (y2 = 1|x) ) (x3 � x2)0� + |�| � 0;

(2) P (y2 = 1|x) � P (y3 = 1|x) ) (x3 � x2)0� � |�|  0;

(3) P (y2 = 0, y3 = 1|x) � P (y2 = 1|x) or P (y1 = 1, y2 = 0|x) � P (y3 = 0|x) ) (x3�x2)0��
min{0, �} � 0;

(4) P (y2 = 1, y3 = 0|x) � P (y2 = 0|x) or P (y1 = 0, y2 = 1|x) � P (y3 = 1|x) ) (x3�x2)0�+

min{0, �}  0;

(5) P (y1 = 0, y2 = 0|x) � P (y3 = 0|x) ) (x3 � x2)0� +max{0, �} � 0;

(6) P (y1 = 1, y2 = 1|x) � P (y3 = 1|x) ) (x3 � x2)0� �max{0, �}  0;

(7) P (y1 = 0, y2 = 0|x) + P (y2 = 0, y3 = 1|x) � 1 ) (x3 � x2)0� � 0;

(8) P (y1 = 1, y2 = 1|x) + P (y2 = 1, y3 = 0|x) � 1 ) (x3 � x2)0�  0;

(9) P (y1 = 1, y2 = 0|x) + P (y2 = 0, y3 = 1|x) � 1 ) (x3 � x2)0� � � � 0;

(10) P (y1 = 0, y2 = 1|x) + P (y2 = 1, y3 = 0|x) � 1 ) (x3 � x2)0� + �  0.

⌅

B.6 Proof of Theorem 4.2

We only give a sketch of the proof since it closely follows the proof of Theorem 4.2. First, for

any ✓̃ 2 ⇥{1,2}
I,cex(1), ✓̃ 2 ⇥{1,3}

I,cex(1) and ✓̃ 2 ⇥{2,3}
I,cex(1) we can construct corresponding bivariate

Fréchet copulas (with corresponding marginal distributions F̃ ) such that, respectively:

(1) P (y1, y2|z) are matched;

(2) P (y1, y3|z) are matched;

(3) P (y2, y3|z) are matched.
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If ✓̃ 2 ⇥{1,2}
I,cex(1)\⇥{1,3}

I,cex(1)\⇥{2,3}
I,cex(1), the we’ll be able to find the same marginal distribution

F̃ that works for all three copulas. And finally, if ✓̃ 2 ⇥{1,2,3}
I,cex , then we’ll be able to use the

same Fréchet copula in (1)-(3) and find a trivariate copula with two-dimensional marginals

given by that common Fréchet copula that allows us to match the distribution of observables.

⌅

C Tables

If: Then:
1.a (x3 � x2)0� +max{0, �}  0

P (0, 0, 1|z)  P (0, 1, 0|z)
1.b (x3�x2)0�  0, (x3�x1)0�� �y0+ �  0, (x1�x2)0�+ �y0  0
2.a (x3 � x2)0� +min{0, �} � 0

P (0, 0, 1|z) � P (0, 1, 0|z)
2.b (x3�x2)0� � 0, (x3�x1)0�� �y0+ � � 0, (x1�x2)0�+ �y0 � 0
3.a (x3�x1)0�� �y0  0, (x2�x1)0�� �y0+ �  0, (x3�x2)0�  0

P (0, 0, 1|z)  P (1, 0, 0|z)
3.b (x3 � x1)0� � �y0  0, �  0
4.a (x3�x1)0�� �y0 � 0, (x2�x1)0�� �y0+ � � 0, (x3�x2)0� � 0

P (0, 0, 1|z) � P (1, 0, 0|z)
4.b (x3 � x1)0� � �y0 � 0, � � 0
5.a (x2 � x1)0� � �y0 + �  0, (x2 � x1)0� � �y0  0, ��  0

P (0, 1, 0|z)  P (1, 0, 0|z)
5.b (x3 � x1)0� � �y0  0, (x2 � x1)0� � �y0  0, (x2 � x3)0�  0
6.a (x2 � x1)0� � �y0 + � � 0, (x2 � x1)0� � �y0 � 0, �� � 0

P (0, 1, 0|z) � P (1, 0, 0|z)
6.b (x3 � x1)0� � �y0 � 0, (x2 � x1)0� � �y0 � 0, (x2 � x3)0� � 0
7.a (x2 � x1)0� � �y0  0, (x2 � x1)0� � �y0 + �  0, �  0

P (0, 1, 1|z)  P (1, 0, 1|z)
7.b (x3�x1)0���y0+�  0, (x2�x1)0���y0+�  0, (x2�x3)0�  0
8.a (x2 � x1)0� � �y0 � 0, (x2 � x1)0� � �y0 + � � 0, � � 0

P (0, 1, 1|z) � P (1, 0, 1|z)
8.b (x3�x1)0���y0+� � 0, (x2�x1)0���y0+� � 0, (x2�x3)0� � 0
9.a (x3�x1)0�� �y0+ �  0, (x2�x1)0�� �y0  0, (x3�x2)0�  0

P (0, 1, 1|z)  P (1, 1, 0|z)
9.b (x3 � x1)0� � �y0 + �  0, ��  0
10.a (x3�x1)0�� �y0+ � � 0, (x2�x1)0�� �y0 � 0, (x3�x2)0� � 0

P (0, 1, 1|z) � P (1, 1, 0|z)
10.b (x3 � x1)0� � �y0 + � � 0, �� � 0
11.a (x3 � x2)0� �min{0, �}  0

P (1, 0, 1|z)  P (1, 1, 0|z)
11.b (x3�x2)0�  0, (x3�x1)0�� �y0  0, (x1�x2)0�+ �y0� �  0
12.a (x3 � x2)0� �max{0, �} � 0

P (1, 0, 1|z) � P (1, 1, 0|z)
12.b (x3�x2)0� � 0, (x3�x1)0�� �y0 � 0, (x1�x2)0�+ �y0� � � 0

Table 3: Restrictions for T = 3 time periods under conditional exchangeability assumption.
Strict inequalities in parameters imply strict inequalities in probabilities.
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If: Then:
1 �  0 P (0, 0, 1|y0 = 0)  P (0, 1, 0|y0 = 0)
2 � � 0 P (0, 0, 1|y0 = 0) � P (0, 1, 0|y0 = 0)
3 �  0 P (0, 0, 1|y0 = 0)  P (1, 0, 0|y0 = 0)
4 � � 0 P (0, 0, 1|y0 = 0) � P (1, 0, 0|y0 = 0)
7 �  0 P (0, 1, 1|y0 = 0)  P (1, 0, 1|y0 = 0)
8 � � 0 P (0, 1, 1|y0 = 0) � P (1, 0, 1|y0 = 0)
9.a �  0 P (0, 1, 1|y0 = 0)  P (1, 1, 0|y0 = 0)
10.a � � 0 P (0, 1, 1|y0 = 0) � P (1, 1, 0|y0 = 0)
11.b � � 0 P (1, 0, 1|y0 = 0)  P (1, 1, 0|y0 = 0)
12.b �  0 P (1, 0, 1|y0 = 0) � P (1, 1, 0|y0 = 0)

Table 4: Identifying restrictions for T = 3 and conditional exchangeability assumption.
Strict inequalities for � imply strict inequalities in probabilities.

If: Then:
1 �  0 P (0, 0, 1|y0 = 1)  P (0, 1, 0|y0 = 1)
2 � � 0 P (0, 0, 1|y0 = 1) � P (0, 1, 0|y0 = 1)
3.a � � 0 P (0, 0, 1|y0 = 1)  P (1, 0, 0|y0 = 1)
4.a �  0 P (0, 0, 1|y0 = 1) � P (1, 0, 0|y0 = 1)
5 � � 0 P (0, 1, 0|y0 = 1)  P (1, 0, 0|y0 = 1)
6 �  0 P (0, 1, 0|y0 = 1) � P (1, 0, 0|y0 = 1)
9 � � 0 P (0, 1, 1|y0 = 1)  P (1, 1, 0|y0 = 1)
10 �  0 P (0, 1, 1|y0 = 1) � P (1, 1, 0|y0 = 1)
11.b � � 0 P (1, 0, 1|y0 = 1)  P (1, 1, 0|y0 = 1)
12.b �  0 P (1, 0, 1|y0 = 1) � P (1, 1, 0|y0 = 1)

Table 5: Identifying restrictions for T = 3 and conditional exchangeability assumption.
Strict inequalities for � imply strict inequalities in probabilities.
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