
Formation of Teams in Contests: Tradeoffs Between Inter-

and Intra-Team Inequalities*

Hideo Konishi Chen-Yu Pan Dimitar Simeonov

November 18, 2023

Abstract

We consider a team contest in which players make efforts to compete with other teams

for a prize, and players of the winning team divide the prize according to a prize-sharing

rule. This prize-sharing rule matters in generating members’ efforts and attracting players

from outside. Assuming that players differ in their abilities to contribute to a team and

their abilities are observable, we analyze which team structure realizes by allowing players

to move across teams. This inter-team mobility is achieved via head-hunting: a team

leader can offer one of the positions to an outside player. We say that it is a successful

head-hunting if the player is better off by taking the position, and the team’s winning

probability is improved. A team structure is stable if there is no successful head-hunting

opportunity. We show that if all teams employ the egalitarian sharing rule, then the

complete sorting of players according to their abilities occurs, and inter-team inequality

becomes the largest. In contrast, if all teams employ a substantially unequal sharing rule,

there is a stable team structure with a small inter-team inequality and a large intra-team

inequality. This result illustrates a trade-off between intra-team inequality and inter-team

inequality in forming teams.
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1 Introduction

In team contests players have to exert joint effort in order to compete with other teams for

a prize. Each player’s performance is typically affected by internal team characteristics such

as the team composition (the ability or productivity of one’s teammates), the agreed-upon

prize sharing rule, the complementarity between individual efforts, as well as the presence of

free-riding incentives. The resulting teammates’ efforts are then aggregated to team effort

which, when measured against that of other teams, determines the team’s winning probability

according to a Tullock contest success function. Thus, the relative strength and composition

of opposing teams can affect not only the equilibrium effort choice of each player but the

equilibrium team composition in the first place.

In this paper we focus on a specific type of player mobility across teams, namely mobility

achieved through head-hunting. We assume that in an attempt to improve their equilibrium

winning probability, teams can extend an offer to any player. This offer must specify the new

recruit’s relative position on the team, characterized by a predetermined value for their share

of the prize. When players consider the decision of potentially accepting such an offer, they

have to weigh multiple costs and benefits: (1) what is the share of the prize they would receive

on the other team? (2) how much effort would they have to exert there? (3) what is the new

team’s winning probability, and how important would their new position be in affecting the

team’s performance? (4) how does their (publicly known) ability compare to that of their new

teammates, and could a potential transfer lead to increased free-riding incentives? (5) what

happens to the seat they vacated on their current team (if they had one), and how will this

affect the competition as a whole? When a player finds an offer acceptable, and if their new

team’s equilibrium winning probability is increased as a result of them joining, then we say that

a successful head-hunting occurs. A team structure (a matching between teams and players)

that allows no successful head-hunting will be defined as head-hunting-proof (or stable).

The goal of this work is to study the types of stable team structures that might result from

common reward allocation rules. We assume that all teams have the same fixed capacity and

that they all use the same common prize allocation rule. This sharing rule might be imposed

as a part of the rules of the contest (such as the Kaggle example below), or it might just be

the result of a long-established social norm in each industry. We distinguish between different

allocation rules according to how equally they treat team members. At one end of the spectrum

we consider the egalitarian rule which divides the prize equally among the players. At the other

end are rules that treat players unequally, giving higher-ranked members substantially higher

shares. Before proceeding with an overview of our findings, we present several examples that

help illustrate the use of such allocation rules and the resulting team structures.

The first example comes from the website Kaggle, a platform hosting a variety of data science

and machine learning competitions. Each competition is self-contained, with a predetermined

prize, and there is a global cap of eight players per team (although each competition often has
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a lower team size limit). Anyone is allowed to participate and submit a solution, and joining

a team is left entirely in the hands of the contestants. Committing to a team occurs at the

time of registration for each contest and results in a binding agreement. When a team wins a

competition, the prize is equally divided between team members regardless of their contribution

(the egalitarian rule is enforced by Kaggle). It should be noted that all solutions are evaluated

and ranked, not only the winning one. Each player is then granted a score representing how

well their team did in the contest. The score is publicly known and can help players find teams

in future contests. It has been observed that over time many of the teams have ended up sorted

by ability - some of the highest-ranked contestants have joined teams together, winning or

scoring high in multiple competitions. The same seems to be true at the middle- and lower-end

of scores as well. The continued evolution of team formation at Kaggle is very reminiscent of

head-hunting and has led to an outcome in which the resulting inter-team inequality stands in

contrast to the implicitly enforced intra-team equality.

The second example comes naturally from team sports leagues such as the NBA. The drafts

in such leagues are often designed to help weaker teams by giving them priority in picking

new players and thus ensuring a degree of inter-team equality. As weaker teams can get the

highest-ability players, this type of system typically leads to matching outcomes with a wide

distribution of ability within each team (at least to start with). But this comes hand-in-hand

with a very high salary inequality within teams as well. Just among the top 30 rookie contracts

the variation in 2019 in the NBA for example was between $13 and $51 million. In a way, the

high degree of intra-team inequality is a prerequisite for achieving relative inter-team equality.

A perhaps better example illustrating the emergence of inter-team equality in the pres-

ence of intra-team team inequality comes from hierarchical reward systems in many industries

requiring white-collar jobs. Such systems are typically based on the rationale that high differ-

entiation (in pay or recognition) between ranks within an organization promotes competition

for promotion, which can result in increases in on-the-job performance. However, even though

such structures are designed as an incentive mechanism within a company, they often lead re-

cruiters to hire industry specialists (known as head-hunters) who are able to target candidates

from competing organizations. These specialists do not typically engage in actual recruitment

but instead focus on identifying high-quality employees for specific high-level positions.1 The

resulting recruitment process leads high-ability individuals into the highest-ranking jobs across

competing organizations which inadvertently results in a relatively even distribution of talent

across companies.

The way in which we allow the intuitive structure from the examples above to transpire in

this work is by explicitly modeling worker heterogeneity. In particular, players differ in their

observable abilities and hence in their ability to contribute to a given team. Furthermore,

1Some US higher education institutes hire head-hunting companies to conduct their search for new deans
of their schools. For example, in conducting a dean’s search for a business school of a university, a head-
hunting company often approaches department chairs of business schools and others elsewhere to ask about
their interests in playing such a role.

3



team output is the result of aggregated individual effort inputs, which we model via a CES

aggregator function, allowing for different levels of effort complementarity. Players’ efforts are

not observable or not contractable—thus players’ efforts contribute to the winning probability

of their team but do not affect their shares of the winning prize. The shares that players receive

are allowed to be heterogeneous based on the positions they are assigned to, and we explicitly

focus on the rate at which lower positions are discounted relative to higher positions within each

team. It should be noted that by combining the approaches by Konishi and Pan (2020, 2021)

and Simeonov (2020), we can explicitly solve for player’s equilibrium payoffs, which makes it

possible to discuss head-hunting as a well-defined process of attracting better candidates.

The main result of this work is to show that the tradeoffs between intra- and inter-team

inequalities are not coincidental. We show that when the egalitarian rule is used within each

team, then complete ability sorting across teams is the only stable team structure. Alternatively,

we consider hierarchical prize allocation rules in which a common discount factor for rewards

is used. For high discount factors, we show that the cyclical allocation of players across teams

is stable. For intermediate discount factors, both the cyclical and complete sorting by ability

can coexist, and more generally, a combination of cyclical assignment and ability sorting can

occur in a stable team structure.

Much of the rationale behind these results originates from our key Lemma 3 in Section 4

below. It would be instructive to diverge with a brief discussion of Lemma 3 before proceeding

with the model. Consider in particular a scenario with two teams: a strong team A with high

average team ability and a high equilibrium chance of winning and a weaker team B with lower

average team ability and low chance of success. Suppose, however, that the stronger team A

currently has hired a relatively low-ability player for a certain position (player 1), while the

same corresponding position on team B is filled by a player of higher skill (player 2). As long

as the shares attached to these positions are the same (they are filling equivalent positions),

then Lemma 3 states that team A will have a higher winning probability and player 2 will get a

higher expected payoff by switching from team B to team A. It should be intuitively clear that

team A only has to benefit by hiring a more capable player - by replacing player 1 with player

2, team A improves its winning probability. Player 2, on the other hand, receives the same

fraction of the prize in both cases, so moving to the stronger team increases her probability of

getting that share in the first place.

In many ways Lemma 3 is the embodiment of the tradeoff between intra- and inter-team

inequalities. If all teams use the egalitarian rule to split the rewards equally, then high-ability

players will not be happy on lower-ability teams. Not only might they receive an unfair share

given their skill, but their presence on such teams might exacerbate free-riding by their lower-

ability teammates. It would make sense for those high-ability players to welcome head-hunting

by high-ability teams instead. Thus, a team matching structure characterized by a high degree

of ability sorting seems like a natural outcome here. What incentives then would be sufficient

to break a high-ability team so that some of its players are willing to join other, perhaps weaker

4



teams? Clearly, there must be a significant difference in compensation between group members

to open the possibility for such an occurrence. Only then would a high-ability player find it

viable to join a higher position on a weaker team instead of keeping a lower position on a more

successful team. High inequality within teams seems to become a necessary prerequisite for

achieving a more even distribution of talent across teams.

The rest of the paper is organized as follows. The following section presents a brief review

of related literature. Section 2 describes the model and assumptions. Section 3 presents the

equilibrium player and team efforts in general team contests. In Section 4, we proceed with the

discussion of stability and the main results regarding the tradeoffs between intra- and inter-team

inequalities, and Section 5 concludes.

1.1 Relations to the Literature

Broadly, this paper belongs to the theory of coalition formation with externalities. Players’

payoffs depend not only on which coalition they belong to but also on other coalitions. Hart

and Kurz (1983), Bloch (1996), Yi (1997), Ray and Vohra (1999), and Ray (2008) provide a

general analysis of coalition formation games with externalities across coalitions. As specific

economic applications, Bloch (1995), Yi (1996), and Ray and Vohra (2001) consider cartel

structures, customs unions, and public good provision groups, respectively. Our paper belongs

to this literature, but there are some differences: in our game, there is a membership quota

for each team, and prize-sharing rules within a team are predetermined, but shares can be

heterogeneous. Thus, each position of a team can be heterogeneous for players, and players

care about which position of a team they will be assigned to. This is a new feature of our model

in the coalition formation literature.

More specifically, this paper belongs to the literature on group contests and prize-sharing

rules. Assuming individual efforts are contractable, Nitzan (1991) analyzes how the combination

of an egalitarian and a relative-effort-sharing rules affects members’ incentives for players in

large and small groups. Lee (1995) and Ueda (2002) endogeneize group sharing rules in this

class. Esteban and Ray (2001) and Nitzan and Ueda (2011) show that Olson’s (1973) group

size paradox disappears if the prize among the members can be allocated into public and

private benefits and if private benefits can be allocated by an endogenously chosen relative-

effort-sharing rule, respectively. Based on the line of group contest research above, Baik and

Lee (1997, 2001) endogenize the alliance formation in Nitzan’s (1991) game with endogenous

group sharing rules and analyze two- and multiple-alliance cases, respectively. They use open-

membership games to describe alliance formation. Bloch et al. (2006) generalize the model

substantially to analyze the stability of the grand alliance in different alliance formation games.

Sanchez-Pages (2007a,b) explores different types of stability concepts in alliance formation

in contests where efforts are perfect substitutes. These papers assume alliance members can

write a binding contract of sharing rules in the case of the alliance’s winning. In contrast,
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following Esteban and Sakovics (2003), Konishi and Pan (2020, 2021) analyze equilibrium

alliance structures in homogenous player alliance formation games without side payments when

members’ efforts are complementary with each other by using a CES aggregator function.2 The

current paper extends Konishi and Pan (2020,2021), allowing for heterogeneous abilities and

unequal sharing rules using the approach by Simeonov (2020) and Kobayashi, Konishi, and

Ueda (2023).3 Unlike in Nitzan (1991) and Nitzan and Ueda (2011), individual efforts are

unobservable or noncontractable, allowing for free-riders as in Esteban and Ray (2001). For

more complete surveys of the literature on group contests, see Konrad (2009) and Fu and Wu

(2019).

Our stability notion, head-hunting-proofness, is close to pairwise stability in matching lit-

erature due to the presence of team membership quotas. Gale and Shapley (1962) introduce

the celebrated two-sided matching problem and its solution concept, pairwise stable matching.

In their domain, the pairwise stability is equivalent to the core despite its simplicity. Imamura,

Konishi, and Pan (2021) introduce externalities across matched pairs to the two-sided matching

problems and show that their pairwise stable matching via swapping preserves nice properties.4

Our head-hunting-proofness can be interpreted as a team structure that is immune to pairwise

deviations by a team leader who cares about the winning probability of the team and a player

who cares about his/her private benefits.5

Lastly, our intra- and inter-team inequality result is closely related to two papers in hedonic

game literature. Hedonic games are characteristic function form games (thus no externalities

across coalitions), in which a player’s payoff is solely determined by the coalition she joins.6

Banerjee, Konishi, and Sonmez (2001) show that under their top coalition property, an assor-

tative coalition structure is the unique coalition structure core allocation. Morelli and Park

(2016) consider hedonic games in which a player must consider both i) the expected power of

the coalition and ii) her position in the vertical structure within the coalition, and show that

cyclical assignment allocations are core stable. Our model generates these two allocations by

changing the sharing rules in the same model with externalities.7

2In contest games, Kolmar and Rommeswinkel (2013) consider a group contest played by exogenously formed
groups using a CES effort-aggregator function when group members have heterogeneous abilities.

3When team memberships are fixed, Simeonov (2020) and Kobayashi et al. (2023) consider the optimal
sharing rules and task-assignment rules to maximize the aggregated team effort under CES effort aggregator
functions and constant elasticity effort cost functions.

4Imamura and Konishi (2021) provide additional support for pairwise stability via swapping by introducing
farsighted agents. They show that the pairwise stability via swapping is equivalent to the largest consistent set
in Chwe (1994) in the pairs competition problem introduced in Imamura, Konishi, and Pan (2021).

5Our stability notion assumes that players are somewhat naive. In the theory of coalition formation with
externalities across coalitions, typical solution concepts assume quite sophisticated players (see Bloch 1997, Ray
2008, and Ray and Vohra 2014 for surveys).

6See Banerjee, Konishi, and Sonmez (2001) and Bogomolnaia and Jackson (2002).
7The readers should be reminded that the solution concept of this paper differs from their core stability. It is

hard to formulate group deviations without adding a lot of structures to the game in the presence of widespread
externalities.
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2 The Model

There are potentially j = 1, 2, ..., J teams, and there are M positions in a team. Let (m, j)

stand for the mth position in j team. Player i = 1, ..., N is characterized by her ability ai.

We assume that a1 ≥ a2 ≥ ... ≥ aN . With some abuse of notations, we also let M , J , and

N stand for the set of positions, teams, and players, respectively. A membership profile is

φ = (φmj)m∈M,j∈J where φmj ∈ N ∪ {∅} for all m ∈ M and j ∈ J . We assume a player

can only belong to a team. Therefore, a membership profile is feasible if φmj ̸= φm′j′ for all

(m, j) ̸= (m′, j′). Let Nj = {i ∈ N |φmj = i for some m ∈ M} ⊂ N be the set of players in

team j under φ.

We will consider our team stability problem in a team contest framework in two stages. In

stage 1, a team structure φ is determined, and in stage 2, an actual team contest occurs given

φ. Membership profile φ is formed in stage 1, by players’ foreseeing the resulting outcomes in

stage 2. So, we will first describe the team contest problem in stage 2, and our stability notion

in stage 1 will be introduced in Section 4.8

Given a feasible membership profile φ, players compete with each other as a team for

a prize, which value is V . In this contest, team members i ∈ Nj choose their effort levels ei

simultaneously and non-cooperatively. The members’ efforts in team j are aggregated by a CES

function Xj = (
∑

m∈M aσφmj
eσφmj

)
1
σ , where 0 < σ < 1.9 This CES aggregator function becomes

a linear function (perfect substitutes) when σ = 1, and becomes a Cobb-Douglas function when

σ = 0 in the limit. Teams’ aggregate effort vector (X1, ..., XJ) determines each team’s winning

probability. The winning probabilities of teams are determined by a Tullock-style contest: team

j’s “winning probability” is given by

Pj =
Xj∑J
k=1Xk

. (1)

After the winning team gets the prize, it will distribute the prize to its team members by a

common fixed sharing rule that is considered as a social norm. This common sharing rule is

θ = (θ1, ..., θm, ..., θM) with θm ∈ [0, 1] and
∑

m∈M θm = 1, in which θm stands for the prize

share that the player in position m of a team. Without loss of generality, we rank positions in

a team by its shares, that is, θ1 ≥ θ2 ≥ ... ≥ θM . The effort cost function is common for all

players: player i’s effort is common and linear ci(ei) = ei. Therefore, the expected payoff of the

player in the position m of team j, or, equivalently, the player i such that φmj = i is

Uφmj
= θmPjV − eφmj

.

Each member of a team decides his/her effort level to maximize his/her expected payoff. We

8Our solution concept is a hybrid of cooperative and noncooperative games. In stage 2, team contests are
played noncooperatively, whereas in stage 1, we consider an allocation that is immune to head-hunting.

9Kolmar and Rommeswinkel (2013) call this CES function a group impact function.
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assume that team j members regard the other groups’ aggregate effortX−j as given and consider

a Nash equilibrium of team j’s effort contribution game as the best response of group j to the

other groups’ aggregate effort X−j.

3 Team Contest

3.1 Equilibrium Analysis

For the time being, let’s assume that all teams and all players make positive efforts. If so, the

first-order condition of any player i with φmj = i is

∂Uφmj

∂eφmj

= θm
(
∑M

m′=1 a
σ
φm′j

eσφm′j
)

1
σ
−1aσφmj

eσ−1
φmj

X−j((∑M
m′=1 a

σ
φm′j

eσφm′j

) 1
σ
+X−j

)2 V − 1 = 0.

By using X1−σ
j =

(∑M
m′=1 a

σ
φm′j

eσφm′j

) 1
σ
−1

, this can be rewritten as

(1− Pj)
V

X
X1−σ

j aσφmj
eσ−1
φmj

θm − 1 = 0.

From this expression, we have

e1−σ
φmj

= X1−σ
j

[
(1− Pj)

V

X

]
aσφmj

θm

and

eφmj
= Xj

[
(1− Pj)

V

X

] 1
1−σ (

aσφmj
θm

) 1
1−σ

(2)

Here, note that if Xj = 0 then ei = 0 for all i ∈ Nj. We raise this to the power of σ and then

multiply it by aσφmj
,

aσφmj
eσφmj

= Xσ
j

[
(1− Pj)

V

X

] σ
1−σ

a
σ

1−σ
φmj θ

σ
1−σ
m

is obtained (the power of ai is calculated by σ2

1−σ
+ σ = σ

1−σ
). Therefore, we may sum up with

respect to all positions m in team j and then raise it to the power of 1
σ
,

Xj = Xj

[
(1− Pj)

V

X

] 1
1−σ

(
M∑

m=1

a
σ

1−σ
φmj θ

σ
1−σ
m

) 1
σ

or

1 =

[
X−jV

X2

] 1
1−σ

(
M∑

m=1

a
σ

1−σ
φmj θ

σ
1−σ
m

) 1
σ
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is obtained. Thus, we have

1(∑M
m=1 a

σ
1−σ
φmj θ

σ
1−σ
m

) 1−σ
σ

=
X−j

X2
× V. (3)

Summarizing this, we present the following lemma.

Lemma 1. Suppose that team j makes a positive aggregate effort in equilibrium. Then, we

have
1

Aj(φj)
=
X−j

X2
× V, (4)

where Aj(φj) =
(∑M

m=1 a
σ

1−σ
φmj θ

σ
1−σ
m

) 1−σ
σ

stands for the productivity of team j.

Summing the above up over all active teams, we have

J∑
k=1

1

Ak(φk)
=

(J − 1)

X
V

or

X =
(J − 1)V∑J
k=1

1
Ak(φk)

.

Substituting this back into (3) and recalling
X−j

X
= 1− Pj, we obtain

1− Pj =

1
Aj(φj)

V

(J − 1)V∑J
k=1

1
Ak(φk)

=
(J − 1) 1

Aj(φj)∑J
k=1

1
Ak(φk)

and

Pj = 1−
(J − 1) 1

Aj(φj)∑J
k=1

1
Ak(φk)

. (5)

Equation (5) says that the equilibrium winning probability of team j is an increasing function

of Aj(φj), the productivity of team j, which is only determined by φj and θms.

Equations (4) and (5) together imply that Xj is

Xj = PjX =

{
1−

(J − 1) 1
Aj(φj)∑J

k=1
1

Ak(φk)

}
(J − 1)V∑J
k=1

1
Ak(φk)

We summarize these results in a proposition.

Proposition 1. Suppose that all J teams make positive efforts in equilibrium. Then, for all

j = 1, ..., J , equilibrium aggregate effort and winning probability of team j are written as

Xj =

{
1−

(J − 1) 1
Aj(φj)∑J

k=1
1

Ak(φk)

}
(J − 1)V∑J
k=1

1
Ak(φk)

,
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and

Pj = 1−
(J − 1) 1

Aj(φj)∑J
k=1

1
Ak(φk)

,

where Aj(φj) =
(∑M

m=1 a
σ

1−σ
φmj θ

σ
1−σ
m

) 1−σ
σ

. The total effort of all teams X can be written as

X =
(J − 1)V∑J
k=1

1
Ak(φk)

.

Remark 1. Note that there are possible coordination failures in this model since we assume

σ ∈ (0, 1) and a linear effort cost function.10 A team member may not make an effort if her

teammates are not making an effort due to the complementarity of production. As a result,

there may exist two equilibria—with positive efforts and without effort. We will choose a

positive effort equilibrium whenever it exists to avoid this coordination problem. With this

refinement, we have a unique equilibrium.

Using the results, we can explicitly calculate each player’s equilibrium payoff in stage 2 (see

Appendix for the proof).

Proposition 2. Given a feasible membership assignment φ, suppose that all J teams make

positive efforts in equilibrium. Then, for any team memberships φjs and their sharing rules

θjs, the player i’s equilibrium payoff with i = φmj is written as

Uφmj
= V × θm︸︷︷︸

share

[
1−

(J − 1) 1
Aj(φj)∑J

k=1
1

Ak(φk)

]
︸ ︷︷ ︸
team’s winning probability

1− (J − 1) 1
Aj(φj)∑J

k=1
1

Ak(φk)

 a
σ

1−σ

i θ
σ

1−σ
m∑M

m′=1 a
σ

1−σ
φm′jθ

σ
1−σ

m′


︸ ︷︷ ︸

net benefits by taking effort disutility into account

Remark 2. Note that the contents of the bracket is positive since
a

σ
1−σ
i θ

σ
1−σ
m∑M

m′=1 a
σ

1−σ
φm′j

θ
σ

1−σ
m′

< 1 and

1−
(J−1) 1

Aj(φj)∑J
k=1

1
Ak(φk)

= Pj. That is, Uφmj
≥ V ×θmP 2

j > 0 must hold as long as team j makes positive

efforts.

3.2 Share Function Approach and Active/Inactive Teams

So far, we assumed that all teams are active in equilibrium in the sense that their aggregate

effort is positive. However, since we assume that each player’s marginal cost of making an

effort is a positive constant, it might not be the case if there is a team in which players have

10A CES production function can produce a positive output even if some inputs are zero for σ ∈ (0, 1) (σ = 0
corresponds to a Cobb-Douglas production function, in which all inputs need to be positive to have a positive
output). A linear cost function means a constant marginal cost. Thus, if the marginal cost exceeds the marginal
product, then a team player does not make an effort.
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much lower abilities than other teams. So, to complete the equilibrium analysis, we will apply

a method called the “share function” approach that is systematically analyzed in Cornes and

Hartley (2005), by rewriting the second-stage competition as a Tullock contest with J individual

players with heterogeneous marginal costs.11 Cornes and Hartley (2005) considered a J player

(individual) Tullock contest with heterogenous constant marginal costs w1 ≤ w2 ≤ .... ≤ wJ ,

in which player j = 1, ..., J exerts effort Xj with wj > 0. Her winning probability is specified

by Pj =
Xj∑J

k=1 Xk
, and her payoff is

uj =
Xj∑J
k=1Xk

V − wjXj.

The payoff function is strictly concave in Xj, and the first-order condition is(∑
k ̸=j Xk

)
(∑J

k=1Xk

)2V − wj =
X−j

X2
V − wj = 0, (6)

for j = 1, ..., J . Then, Xj > 0 is a unique best response to X−j if and only if

X2
j + 2X−jXj +X2

−j −
X−j

wj

V = 0.

Noting that some players may have too high a marginal cost for an interior solution, player j’s

best response to X−j is

βj(X−j) = max

{
−X−j +

√
X−jV

wj

, 0

}
.

We define player j’s replacement function following Cornes and Hartley (2005): a replacement

function rj(X) is a function of total effort X such that rj(X) is the best response to X−rj(X):

i.e., rj(X) = βj(X − rj(X)). Thus we obtain

rj(X) = max

{
X − wjX

2

V
, 0

}
.

Let group j’s share function be sj(X) = 1
X
rj(X):

sj(X) = max

{
1− wjX

V
, 0

}
.

Note that sj(X) is a decreasing function in X. Let s(X) =
∑

k sk(X). This is a decreasing

function as well. Order players by w1 ≤ w2 ≤ .... ≤ wJ . The share function s(X) is a piece-wise

linear function with kinks at X̂nj = V
wj

for each j = 1, ..., J . Figure 1 depicts share functions for

11Esteban and Ray (2001) and Ueda (2002) used the same method in Cornes and Hartley (2005).
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Figure 1: An example with J = 4 and w1 < w2 < w3 < w4. Teams 1, 2, and 3 are active. Team
4 is inactive.

j = 1, ..., J and s(X). The equilibrium for the artificial contest is a total effort, X∗, for which

every group’s optimal share sums up to 1. Clearly, there exists a unique equilibrium X∗ defined

by
∑

k sk(X
∗) = 1. Moreover, at the equilibrium X∗, sj(X

∗) is also the winning probability of

player j. As is easily seen from Figure 1, if X̂nj = V
wj
< X∗, then sj(X

∗) = 0 must hold, which

means only those groups with smaller marginal costs are active, i.e., exert positive efforts. The

following lemma summarizes the result of this Tullock game with heterogeneous marginal costs

(J, (wj)
J
j=1).

Lemma 2. [Cornes and Hartley, 2005] A Tullock game with heterogeneous marginal costs

(J, (wj)
J
j=1) has a unique equilibrium X∗ at

∑
j sj(X

∗) = 1. Moreover, there exists j∗ such

that, for each j = 1, ..., j∗, Xj = X∗ − wj(X
∗)2

V
, and for each j = j∗ + 1, ..., J , X̂nj ≤ X∗ (or∑

k sk(X̂
nj) ≥ 1) and Xj = 0 hold.

Note that the set of (interior) first-order conditions for the Tullock contest (6) is identical

to the set of first-order conditions (4) for the original game by setting wj =
1

Aj(φj)
:

(∑
k ̸=j Xk

)
(∑J

k=1Xk

)2V − wj =
X−j

X2
V − 1

Aj(φj)
= 0,

for j = 1, ..., J . Note that the team with a lower marginal cost wj is the team with higher

productivity Aj(φj). Given a team structure, we obtain the following explicit solutions by

considering a special case of Kolmar and Rommeswinkel (2013).
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Theorem 1. Given a team profile φ, there exists a unique equilibrium in the inter-team contest

for any partition of players π = {N1, ..., NJ} characterized by the share function s(X∗) = 1.

There is j∗ ∈ {1, ..., J} such that P ∗
j = sj(X

∗) > 0 (active teams) for all j ≤ j∗ ( X̂j > X∗),

while P ∗
j = sj(X

∗) = 0 (inactive teams) for all j > j∗ ( X̂j ≤ X∗). Then, team j’s winning

probability is

P ∗
j = 1−

(j∗ − 1) 1
Aj(φj)∑j∗

k=1
1

Ak(φk)

,

player i ∈ Nj of team j = 1, ..., J obtains payoff

Uφmj
=

 V × θmP
∗
j

[
1−

(j∗−1) 1
Aj(φj)∑j∗

k=1
1

Ak(φk)

(
aφmj θm

Aj(φj)

) σ
1−σ

]
if j ≤ j∗

0 if j > j∗
.

Moreover, the equilibrium total efforts are

X∗ =
j∗ − 1∑j∗

k=1
1

Ak(φk)

,

and

(j∗ − 1)
1

Aj(φj)
<

j∗∑
k=1

1

Ak(φk)

holds for all j = 1, ..., j∗.12

4 Stable Team Structures

In this section, we will consider the stability of a team structure generated by a given φ. We

will consider a simple concept of head-hunting : given φmj = i′ ∈ N , a team j offers this position

(m, j) to another player i by replacing the incumbent player φmj by player i. A head-hunting is

successful if (i) team j’s winning probability improves, and (ii) player i who received the offer

is better off by switching positions. However, we need to define this concept carefully due to

externalities across teams. We will do so step by step.

A player i ∈ N is employed under φ if i belongs to one of active teams (i = φmj for some

m = 1, ...,M , and some j = 1, ..., j∗), and is unemployed under φ if i ∈ N does not belong to

active teams (i ̸= φmj for any j = 1, ..., j∗). The sets of employed and unemployed players under

φ are denoted by E(φ) and UE(φ), respectively. We say that a successful head-hunting of

an unemployed player is a pair of a team j’s position (m, j) and player i such that (i) team

j’s winning probability increases by replacing player φmj by player i ∈ UE(φ), and (ii) player

i’s payoff increases. Condition (ii) is trivially satisfied since we know that unemployed players

12For j > j∗, we have (j∗ − 1)× 1
Aj(φj)

≥
∑j∗

k=1
1

Ak(φk)
, and team j is inactive (Xj = 0 and P ∗

j = 0).
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get a zero payoff (Theorem 1). We have the following result (see Appendix for the proof).

Proposition 3. Suppose that φ is immune to a successful head-hunting of unemployed workers.

Then, ai′ ≥ ai for all i′ ∈ E(φ) and all i ∈ UE(φ).

This proposition implies that if we are concerned about stable allocations, then we can

focus on the highest M × j∗ ability players. Given that the highest ability M × j∗ players are

employed initially, and if a head-hunting of an employed player takes place, a vacant position

in the head-hunted team and a newly unemployed player (fired by the head-hunting team)

are generated. If players are totally myopic, and head-hunting decisions are made based on

this resulting team structure, there are successful head-huntings that are unreasonable. The

following casual example illustrates the point.

Example 1. Suppose that there are three two-person teams (pairs) of players. The common

sharing rule is egalitarian so that both members of a team get 50% share. Player 1 is the highest

ability one, and player 2 is the second, and so on: player 6 is the lowest ability player. Now,

consider an assortative matching of the players: a great team (players 1 and 2), a very good

team (players 3 and 4), and a poor team (players 5 and 6). In this case, the great team has the

highest winning probability, and the very good team has the second highest winning probability.

The poor team has little chance to win. If players are myopic, there is a successful head-hunting

from this intuitively very stable ability-sorted team structure. The great team may kick out

player 2, and head-hunt player 3. In this case, players 2 and 4 are left alone, and there are

effectively only two teams: a semi-great team with players 1 and 3 and a poor team with players

5 and 6. The former team’s winning probability jumps up close to one without having a serious

rival team. This is a successful head-hunting.

In the above example, players 2 and 4 were unemployed after head-hunting. However, it

is natural to think that these two players form a team in reaction to the head-hunting. Since

the newly unemployed worker has the highest ability, it is best for the team with the vacancy

to make an offer to the newly unemployed player. Thus, it is natural to assume that when

team j head-hunts a player who is currently employed by team k, then team j’s fired player is

employed by team k. Team j expects that team k would hire the player fired by j, and decide

if this head-hunting is profitable.13 Formally, we say:

Definition 1. Let φ is a feasible allocation, and assume that E(φ) = {1, ...,Mj∗} where j∗

is the number of active teams (highest Mj∗ ability players are employed). Consider swapping

players i = φmj and h = φℓk for j, k ≤ j∗, and let φ′ = (φj′)
M
j′=1 be the resulting allocation,

where (i) φ′
j′ = φj′ for all j′ ̸= j, k, (ii) φ′

j = (φ1j, ..., φm−1j, h, φm+1j, ..., φMj), and (iii)

φ′
k = (φ1k, ..., φℓ−1k, i, φℓ+1k, ..., φMk). This swapping is a successful head-hunting of an

13Knuth (1976) asked if a sequence of myopic pairwise deviation processes via swapping would lead to a stable
matching in the context of the marriage problem in which all players are acceptable to all players. In marriage
problems with externalities, Imamura, Konishi, and Pan (2023) and Imamura and Konishi (2023) discussed the
desirability of pairwise deviation via swapping to define pairwise stable matching.
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employed player for j if (a) Pj(φ
′) > Pj(φ) and (b) Uh(φ

′) > Uh(φ). We say that φ is

stable if φ has no successful head-hunting of neither employed nor unemployed players.

Remark 3. Note that with the above definition of successful head-hunting, head-hunting

team j is better off in the Pareto sense except for the former member i who was asked to go.

This is because A(φ′
j) > A(φj) implies all team member’s payoff goes up (by Theorem 1).

Thus, our successful head-hunting implies that the head-hunting team j unanimously accepts

player h’s taking position m. Alternatively, we can define a successful head-hunting by giving

priorities to the team leaders’ preferences who simply want to maximize their teams’ winning

probabilities. If a team leader can assign team members to M positions freely, she assigns

them to the positions by their abilities in descending order: aφ1j
≥ aφ2j

≥ ... ≥ aφMj
. Starting

from any membership profile φj, if player h is head-hunted for position m from team k, then

she would fire φMj instead of φmj by rearranging players as φ′
mj = h, and φ′

m̃j = φm̃−1j for

all m̃ = m + 1, ...,M . In this case, players φmj, ..., φM−1j may not be better off by player h’s

joining the team. We can modify our stability concept by using this definition of a successful

head-hunting. Our Propositions 4 and 5 are robust to this modification of the definition of

stability.14

By Proposition 3, if E(φ) = {1, ...,Mj∗} holds, then there is no successful head-hunting

from UE(φ), so Definition 1 does not need to consider unemployed players. We will first

investigate when swapping i = φmj and h = φℓk is a successful head-hunting for team j. The

following key lemma argues that when two players in two different teams have the same share,

and the player in the stronger team has a lower ability, then swapping two players is a successful

head-hunting (see Appendix for the proof).

Lemma 3. Let i = φmj and h = φℓk with θmj = θℓk for ℓ, k ≤ j∗. Suppose that Aj (φj) ≥
Ak(φk) and ai < ah. Then, swapping i and h is a successful head-hunting for team j.

Now, we will consider an egalitarian sharing rule: θ = ( 1
M
, ..., 1

M
): i.e., all positions in a

team are the same with equal share. Repeatedly applying Lemma 3, we obtain the following

result.

Proposition 4. Suppose that all teams use the egalitarian sharing rule. Then, under any

stable φ, we have a complete ability sorting of players: i.e., by ordering teams by their winning

probabilities (P1(φ) ≥ P2(φ) ≥ ... ≥ PJ(φ)), we have aφmj
≥ aφℓj+1

for all j = 1, ...,min{j∗, J−
1}, and all m, ℓ = 1, ...,M .

Another interesting team structure is generated by a cyclical assignment of players over

J teams is φ = (φj)
J
j=1 such that aφ11 ≥ ... ≥ aφ1J

≥ aφ21 ≥ ... ≥ aφ2J
≥ aφ31 ≥ ... ≥ aφ3J

≥
... ≥ aφM1

≥ ... ≥ aφMJ
. That is, players are ordered by their abilities from the highest to

14Since Lemma 3 below holds even if the stability concept is modified, Proposition 4 obviously holds as it is.
See the discussion in Appendix. Regarding Proposition 5, the statement does not change, but the bound µ̄ will
be reduced by the modification.
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the lowest, and the top J players are assigned to position 1 of each team, then next J players

are assigned to position 2 of each team, and so on and so forth. This means that team j is

composed of players of abilities aj, aj+J , ..., aj+(M−1)J for all j = 1, ..., J . In an interesting

coalition formation game, Morelli and Park (2016) showed this allocation to be group-stable. If

θms are heterogeneous enough, we can show that a cyclical assignment of players over J teams

is a stable team structure. To simplify the exposition, we assume that all J teams are active

under the cyclical assignment.

We will consider a special family of θs which satisfies θm+1 = µθm for all m = 1, ...,M − 1

for µ ∈ [0, 1]. We may call this rule a hierarchical sharing rule. Let θ : [0, 1] → ∆M be such

that

θm(µ) =
µm−1

1 + µ+ ...+ µM−1
=

(1− µ)µm−1

1− µM

for allm = 1, ...,M . If µ = 0, θ1 = 1 with θm = 0 for allm = 2, ...,M , which is a monopolization

rule, while if µ = 1 then it is the egalitarian rule θm = 1
M

for all m = 1, ...,M . The next

proposition shows that the hierarchical sharing rule supports the cyclical assignment allocation

for µ small enough (see Appendix for the proof).

Proposition 5. Consider hierarchical sharing rules. There is µ̄ ∈ (0, 1) such that for all

µ ∈ [0, µ̄) > 0, the cyclical assignment of players over J active teams is stable if θm+1

θm
= µ

holds for all m = 1, ...,M − 1.

Under the egalitarian sharing rule, intra-team inequality is minimized, while inter-team

ability sorting occurs. Thus, inequalities of teams’ productivities A1(φ1), ..., AJ(φJ) are highly

unequal, resulting in a small number of active teams, and the competitiveness of team contests

is limited. In contrast, under the above hierarchical sharing rule, intra-team inequality is high,

while the inequality in teams’ productivities is kept small due to high ability players being

spread over all teams. A large number of active teams can be supported, and the team contest

becomes highly competitive.

The following example shows that complete ability-sorting and cyclical assignment alloca-

tions can coexist (see Appendix for the details).

Example 2. Let σ = 1
2
and V = 1, and let a1 = a2 = a3 = a, a4 = a5 = a6 = νa, and

a7 = a8 = a9 = ν2a. With µ < 1, we have θ1 = 1
1+µ+µ2 , θ2 = µ

1+µ+µ2 , and θ3 = µ2

1+µ+µ2 . A

cyclical assignment allocation is described by φ1 = (1, 4, 7), φ2 = (2, 5, 8), and φ3 = (3, 6, 9),

and a complete sorting allocation is described by φ1 = (1, 2, 3), φ2 = (4, 5, 6), and φ3 = (7, 8, 9).

When µ = 0.9 and ν = 0.8, both the complete ability sorting and cyclical assignment allocations

are stable.

There can be combinations of these two types of allocations.

Example 3. Let σ = 1
2
and V = 1, and let ai = a × (0.9)i−1 for i = 1, ..., 6, ai = (0.9)6

for i = 7, 8, 9, ai = (0.9)7 for i = 10, 11, 12, and ai = (0.9)8 for i = 13, 14, 15. Let M = 5,
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θ1 = 0.5, θ2 = 0.2, and θ3 = θ4 = θ5 = 0.1. There is a stable allocation φ1 = (1, 4, 7, 8, 9),

φ2 = (2, 5, 10, 11, 12), and φ3 = (3, 6, 13, 14, 15), which is a combination of cyclical assignment

and ability sorting allocations. Their winning probabilities are: P1 = 0.369, P2 = 0.332, and

P3 = 0.299. This sharing rule assigns hierarchical shares but treats lower ranks equally. The

resulting allocation reveals that high ability players are spread over teams while low ability

players are ability sorted across teams. This pattern may mimic corporates’ worker ability

distributions.

Finally, we illustrate how our results can be extended to the case with different categories of

positions and different skill types of workers. So far, we assumed that all players belong to the

same category and that teams’ positions are all symmetric. However, teams may have different

categories of positions, and players may have different skill sets.15 For example, in a baseball

team, there are different positions, such as a pitcher, a catcher, infielders, and outfielders, and

players have different skill sets that are suitable for these positions. To describe different roles

of positions and different types of players in a simple manner, we partition the set of positions

M and the player set N into K categories each. Again with an abuse of notations, let the

set of categories be K = {1, ..., K}, and M ≡ ∪k∈KMk with Mk ∩ Mℓ = ∅ for any k ̸= ℓ,

and N ≡ ∪k∈KNk with Nk ∩ Nℓ = ∅ for any k ̸= ℓ. That is, Mk and Nk represent the set of

positions for category k of each team and the set of category k players, respectively. Let team

j’s assignment function φj : M → N be such that for all k ∈ K, all m ∈ Mk, φmj = i implies

i ∈ Nk. With φj, a modified team j’s effort aggregator function can be described by

Xj =

(∑
k∈K

bk

( ∑
m∈Mk

aσφmj
eσφmj

)) 1
σ

,

where 0 < σ < 1, and bk > 0 is the contribution weight for category k positions’ production for

all k ∈ K. We also partition vector θ into k categories: θ = (θk)k∈K with θk = (θ1k, ..., θMkk)

for all k ∈ K.

We can obtain counterparts of Propositions 4 and 5 at no cost by applying Proposition 3

within each category. That is, if θk is egalitarian, type k players sort out by their abilities, and

if θk is highly hierarchical then type k players are spread over teams in a cyclical assignment

manner. It is because the above production function preserves additive structure in the first

parenthesis, and the effect of swapping players in a category is additively separable from other

categories.

15Imamura, Konishi, and Pan (2023) analyze pair formation problems of two-sided matching problems with
externalities such as pairs figure skating and oligopolistic joint ventures. In these problems, the role plays
of players are different (say, male and female, and product development and marketing), and they introduce
categories of players.
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5 Concluding Remarks

When agents decide to join a new team environment, they face a lot of tradeoffs and uncertain-

ties. As members of a new group, they seek the prize collectively, but their positions within the

group and their stakes of winning can often be very unequal. Some of the considerations they

have to account for include their relative position on the team both in terms of their ability to

contribute and their relative compensation, the effort they would have to exert and its effect

on their teammates, its effect on the team’s probability of success and free-riding incentives,

as well as its effect on competing teams’ decisions. We have constructed a model of a collec-

tive group contest that allows us to account for all these effects while permitting free mobility

of players across teams via head-hunting. Our results show that across the resulting stable

team structures there is a significant tradeoff between inter-team inequality and intra-team

inequality.

If all teams use the egalitarian rule to split the rewards equally, then high-ability players

end up being head-hunted by high-ability teams, leading to a very equal distribution of ability

within teams but a very unequal distribution of ability across teams. Conversely, if the goal of

a contest organizer is to design a very competitive environment with equally matched teams,

then a substantial degree of inequality within teams is a necessary prerequisite toward such a

goal.

An interesting direction of research could address the question of how stable team allocations

would look like when different sharing rules can coexist. Unfortunately, it is very hard to obtain

a general existence result of a stable team structure for an arbitrary set of sharing rules. This

is due to integer problems and the externalities across teams: even for our positive results,

we needed to use head-hunting-proofness via swappings by specifying what happens after a

head-hunting (also see Imamura, Pan, and Konishi, 2023, and Imamura and Konishi 2023).

An alternative way to avoid this problem is to assume a large number of atomless teams so

that head-hunting activities or the entries of new teams with nonexisting sharing rules have no

impact on the rest of the teams following the approach introduced by Kaneko and Wooders

(1986).16 In a companion paper, Konishi, Pan, and Simeonov (2023) consider an oligopolistic

market with finite player types and production teams formed by a continuum of atomless players

when each team has only finite players. This paper proves that there is a free entry equilibrium

that is a stable team structure in this idealized large market from which no new team can

improve when multiple sharing rules can coexist. Utilizing their result, we can consider the

limit of replica problems of our team contest with a continuum of players and uniform prizes.

We can formulate subsequent games after teams are formed in the following manner: formed

teams are randomly assigned into (a large number of) K-team leagues, in each of which they

play a team contest for an identical prize: that is, there will be a continuum of ex ante identical

16Assuming finite arbitrary types of atomless players, Kaneko and Wooders (1986) proved the nonemptyness
of f-core, which is immune to invasions by newly formed team membership profiles with new sharing rules. See
Konishi and Simeonov (2023) as well.
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team contests, although ex post each contest is played by a set of different teams. Thus, each

player’s expected payoff is calculated as a weighted expected payoff of each possible draw of

team profile in the contests—they are playing contests with a distribution of team types in

their league.17 In the team formation stage, each player decides which position is available for

her to take based on her expected payoff comparison, and a potential team manager can enter

the market by offering a nonexisting sharing rule in the market if possible. This is so much

stronger equilibrium concept, and the resulting allocation is strongly stable. We are planning

to explore the properties of this free entry equilibrium in such large replica contests.

Appendix

We collect most proofs here.

Proof of Proposition 2. We compute the equilibrium effort level first. Recalling (2), we

obtain

eφmj
= Xj

[
(1− Pj)

V

X

] 1
1−σ (

aσφmj
θm

) 1
1−σ

=

{
1−

(J − 1) 1
Aj(φj)∑J

k=1
1

Ak(φk)

}
(J − 1)V∑J
k=1

1
Ak(φk)

(J − 1) 1
Aj(φj)∑J

k=1
1

Ak(φk)

V
(J−1)V∑J
k=1

1
Ak(φk)


1

1−σ (
aσφmj

θm

) 1
1−σ

=

{
1−

(J − 1) 1
Aj(φj)∑J

k=1
1

Ak(φk)

}
(J − 1)V∑J
k=1

1
Ak(φk)

[
1

Aj(φj)

] 1
1−σ (

aσφmj
θm

) 1
1−σ

This implies that player i’s payoff is written as

Uφmj
= PjθmV − eφmj

=

{
1−

(J − 1) 1
Aj(φj)∑J

k=1
1

Ak(φk)

}
θmV −

{
1−

(J − 1) 1
Aj(φj)∑J

k=1
1

Ak(φk)

}
(J − 1)V∑J
k=1

1
Ak(φk)

[
1

Aj(φj)

] 1
1−σ (

aσφmj
θm

) 1
1−σ

=

{
1−

(J − 1) 1
Aj(φj)∑J

k=1
1

Ak(φk)

}[
θmV − (J − 1)V∑J

k=1
1

Ak(φk)

[
1

Aj(φj)

] 1
1−σ (

aσφmj
θm

) 1
1−σ

]

=

{
1−

(J − 1) 1
Aj(φj)∑J

k=1
1

Ak(φk)

}[
θmV −

(J − 1) 1
Aj(φj)

V∑J
k=1

1
Ak(φk)

[
1

Aj(φj)

] σ
1−σ

θm

(
aσφmj

θσm

) 1
1−σ

]

= V × θm

[
1−

(j∗ − 1) 1
Aj(φj)∑j∗

k=1
1

Ak(φk)

]1− (j∗ − 1) 1
Aj(φj)∑j∗

k=1
1

Ak(φk)

 a
σ

1−σ

i θ
σ

1−σ
m∑M

m′=1 a
σ

1−σ
φm′jθ

σ
1−σ

m′


We completed the proof.■

17Thus, each team’s winning probability is affected by the distribution of other team types, and we need
widespread externalities in Konishi, Pan, and Simeonov (2023).
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Next, we present a useful lemma for the following proofs.

Lemma A1. Suppose that team j = 1, 2, ..., j∗ are active, and team j = j∗ + 1, ..., J are

inactive under assignment φ. Let k ≥ j∗ + 1 and h ≤ j∗, then we have

j∗ − 2∑j∗

j′ ̸=k,h
1

Aj′ (φj′ )

≥ j∗ − 1∑j∗

j′=1
1

Aj′ (φj′ )

≥ j∗∑j∗

j′=1
1

Aj′ (φj′ )
+ 1

Ak(φk)

.

Proof of Lemma A1. By Theorem 1, since team k is inactive we have

j∗ − 1

Ak(φk)
≥

j∗∑
j′=1

1

Aj′(φj′)
.

Then

j∗∑
j′=1

1

Aj′(φj′)
+

1

Ak(φk)
≤

j∗∑
j′=1

1

Aj′(φj′)
+

1

j∗ − 1

j∗∑
j′=1

1

Aj′(φj′)
=

j∗

j∗ − 1

j∗∑
j′=1

1

Aj′(φj′)
.

Rearranging the above inequality yields j∗−1∑j∗
j′=1

1
Aj′ (φj′ )

≥ j∗∑j∗
j′=1

1
Aj′ (φj′ )

+ 1
Ak(φk)

. The remaining part

can be proved in a similar way.■

Proof of Proposition 3. Suppose not. Then, there are φmj ∈ E(φ) and i ∈ UE(φ) such

that aφmj
< ai. Let the number of active teams under φ be j∗. From Proposition 1, we

know Pj = 1 −
(j∗−1) 1

Aj(θj)∑j∗
k=1

1
Ak(θk)

and Aj(φj) =
(∑M

m′=1 a
σ

1−σ
φm′jθ

σ
1−σ

m′j

) 1−σ
σ

. Thus, if team j replaces

φmj by i, the new membership profile denoted by φ′ yields a higher productivity Aj(φ
′
j) =(∑M

m′=1 a
σ

1−σ

φ′
m′j
θ

σ
1−σ

m′j

) 1−σ
σ

> Aj(φj). If the number of active teams does not change by this

swapping, team j’s winning probability increases since Aj(φ
′
j) > Aj(φj). Moreover, player

i obtains a positive payoff by being employed, so she has an incentive to join. This is a

contradiction with φ’s being stable.

So far, we have considered the case where j∗ does not change. We check if this consideration

changes the above result. From Theorem 1, we know that team j∗+1 is inactive if 1
Aj∗+1(φj∗+1)

≥
1

j∗−1

[∑j∗

k=1,k ̸=j
1

Ak(φk)
+ 1

Aj(φj)

]
. Since this swapping of players i and φmj yields Aj(φ

′
j) >

Aj(φj), team j∗ +1 will still be inactive after the swapping. Thus, the number of active teams

does not increase by the swapping. It is possible for the number of active teams to decrease.

Let P ′
j stand for team j’s winning probability under φ′. Suppose that team j∗ becomes inactive
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after the swapping and observe that

P ′
j = 1−

(j∗ − 2) 1
Aj(φ′

j)∑j∗−1
k=1,k ̸=j

1
Ak(φk)

+ 1
Aj(φ′

j)

> 1−
(j∗ − 2) 1

Aj(φj)∑j∗−1
k=1,k ̸=j

1
Ak(φk)

+ 1
Aj(φj)

> 1−
(j∗ − 1) 1

Aj(φj)∑j∗−1
k=1,k ̸=j

1
Ak(φk)

+ 1
Aj∗ (φj∗ )

+ 1
Aj(φj)

.

The last inequity holds because of 1
Aj∗ (φj∗ )

< 1
j∗−2

[∑j∗−1
k=1,k ̸=j

1
Ak(φk)

+ 1
Aj(φj)

]
(team j∗ is active

under φ) and Lemma A1.■

Proof of Lemma 3. First, we consider the case where the swapping does not change the

number of active teams j∗. Note that Aj (φj) ≥ Ak(φk) means Ãj(φj) =
∑M

m′=1 a
σ

1−σ
φm′jθ

σ
1−σ

m′j ≥
Ãk(φk) =

∑M
m′=1 a

σ
1−σ
φm′kθ

σ
1−σ

m′k . Let θ = θmj = θℓk, and let ãi ≡ a
σ

1−σ

i θ
σ

1−σ

ℓk = a
σ

1−σ

i θ
σ

1−σ and ãh =

a
σ

1−σ

h θ
σ

1−σ

mj = a
σ

1−σ

h θ
σ

1−σ . Clearly, ãh > ãi holds, since ah > ai. The immediate consequence of this

is Ãj(φ
′
j) > Ãj (φj) ≥ Ãk(φk) > Ãk(φ

′
k), which implies Aj(φ

′
j) > Aj (φj) ≥ Ak(φk) > Ak(φ

′
k).

Note that

1
Aj(φj)∑J

j′=1
1

Aj′ (φj′ )

≥
1

Aj(φ′
j)∑

s̸=j,k
1

As(φs)
+ 1

Aj(φ′
j)
+ 1

Ak(φk)

≥
1

Aj(φ′
j)∑

s ̸=j,k
1

As(φs)
+ 1

Aj(φ′
j)
+ 1

Ak(φ
′
k)

.

The first inequality is due to 1
Aj(φ′

j)
< 1

Aj(φj)
, and the second one is due to 1

Ak(φ
′
k)
> 1

Ak(φk)
.

Since Pj (φ) = 1−
(j∗−1) 1

Aj(φj)∑j∗
j′=1

1
Aj′ (φj′ )

, we conclude Pj(φ
′) > Pj(φ). So, condition (a) for a successful

head-hunting is satisfied. Now, let’s move on to (b). From Theorem 1, we know

Uh(φ) = V × θPk(φ)

1− (j∗ − 1) 1
Ak(φk)∑j∗

j′=1
1

Aj′ (φj′ )

(
ahθ

Ak(φk)

) σ
1−σ


and

Uh(φ
′) = V × θPj(φ

′)

1− (j∗ − 1) 1
Aj(φ′

j)∑j∗

j′=1
1

Aj′ (φ
′
j′ )

(
ahθ

Aj(φ′
j)

) σ
1−σ

 .
Since Pj(φ

′) > Pj(φ) ≥ Pk(φ),
1

Ak(φk)∑j∗
j′=1

1
Aj′ (φj′ )

≥
1

Aj(φj)∑j∗
j′=1

1
Aj′ (φj′ )

>

1
Aj(φ

′
j
)∑

s ̸=j,k
1

As(φs)
+ 1

Aj(φ
′
j
)
+ 1

Ak(φ′
k
)

=

1
Aj(φ

′
j
)∑j∗

j′=1
1

Aj′ (φ
′
j′

)

, and Aj(φ
′
j) > Ak(φk), we conclude Uh(φ

′) > Uh(φ). Thus, (b) is satisfied, too.

Second, we consider the case where an inactive team, team j∗ + 1, is activated by the

swapping. By Lemma A1, we have (j∗−1) 1
Aj∗+1(φj∗+1)

≥
∑j∗

j′=1
1

Aj′ (φj′ )
and (j∗−1) 1

Aj∗+1(φj∗+1)
<
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∑j∗

j′=1
1

Aj′ (φ
′
j′ )
. These two inequalities imply that

(j∗ − 1) 1
Ak(φk)∑j∗

j′=1
1

Aj′ (φj′ )

≥
(j∗ − 1) 1

Aj(φj)∑j∗

j′=1
1

Aj′ (φj′ )

≥
j∗ 1

Aj(φj)∑j∗

j′=1
1

Aj′ (φj′ )
+ 1

Aj∗+1(φj∗+1)

>
j∗ 1

Aj(φ′
j)∑

j′ ̸=j,k
1

Aj′ (φj′ )
+ 1

Aj(φ′
j)
+ 1

Ak(φ
′
k)
+ 1

Aj∗+1(φj∗+1)

For the same reason as the previous case, conditions (a) and (b) are satisfied.

Third, it is also possible for the number of active teams to decrease, but it simply increases

Pj, and team j benefits from that. Thus, the conclusion does not change. Hence, we conclude

Uh(φ
′) > Uh(φ).

18■

Proof of Proposition 5. Given θ(µ) = (θ1(µ), ..., θM(µ)), we will check the stability of a cycli-

cal assignment of players over J teams. Let’s assign players over teams from the highest ability

to the lowest cyclically and denote the resulting assignment as φ. For notational simplicity, we

drop µ from θ(µ). First, let Tm = {(m− 1)J + j′|j′ = 1, ..., J} be the set of players occupying

position m for each team in a cyclical assignment. Note that any player in Tm will not be head-

hunted for a higher position. Therefore, we may focus on player φmj = i = (m− 1)J + j ∈ Tm

who belongs to team j and considers taking position m+1 of another team k ̸= j. By Theorem

1 and Remark 2, we have

Ui(φ;µ) > θm (Pj(φ))
2

= θm

1− (J − 1)

1
Aj(φj)∑J

j′=1
1

Aj′ (φj′ )

2

If player i moves take position m+ 1 of team s, players i and φ(m+1)k = mJ + k are swapped.

Denote the new assignment as φ′, and player i’s payoff at position m+ 1 of team k is

Ui(φ
′;µ) = θm+1Pk(φ

′)

1− (J − 1)

1
Ak(φ

′
k)∑J

j′=1
1

Aj′ (φ
′
j′ )

(
aiθm+1

Ak(φ′
k)

) σ
1−σ


< θm+1Pk(φ

′)

= θm+1

(
1− (J − 1)

1
Ak(φ

′
k)∑

j′ ̸=k,j
1

Aj′ (φj′ )
+ 1

Ak(φ
′
k)
+ 1

Aj(φ′
j)

)

whereAk(φ
′
k) andAj(φ

′
j) are the resulting productivity after swapping. Let ν̄ = minm=1,...,M−1

a(m+1)J

a(m−1)J+1
≤

1, which is the widest player ability difference ratio of two adjacent ranks. This implies that

amJ+k ∈ [ν̄ai, ai].

18By the above proof, we only need to show that Ãj(φ
′
j) > Ãj (φj) ≥ Ãk(φk) > Ãk(φ

′
k) after the swap, which

is immediate from the alternative definition of a successful head-hunting in Remark 3. Therefore, Lemma 3
holds under the alternative definition, too.
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SinceAj(φj) =
(∑M

ℓ=1 a
σ

1−σ

j+(ℓ−1)Jθ
σ

1−σ

ℓ

) 1−σ
σ

, Ak(φ
′
k) <

((
1
ν̄
amJ+k

) σ
1−σ θ

σ
1−σ

m+1 +
∑M

ℓ̸=m+1 a
σ

1−σ

k+(ℓ−1)Jθ
σ

1−σ

ℓ

) 1−σ
σ

<

1
ν̄
Ak(φk). Similarly, Aj(φ

′
j) >

(
ν̄ai +

∑M
ℓ̸=m a

σ
1−σ

j+(ℓ−1)Jθ
σ

1−σ

ℓ

) 1−σ
σ

> ν̄Aj(φj) hold. Thus, we have

Ui(φ
′;µ) < θm+1

(
1− (J − 1)

1
Ak(φ

′
k)∑

j′ ̸=k,j
1

Aj′ (φj′ )
+ 1

Ak(φ
′
k)
+ 1

Aj(φ′
j)

)

< θm+1

(
1− (J − 1)

ν̄
Ak(φk)∑

j′ ̸=k,j
1

Ak(φk)
+ 1

Ak(φk)
+ 1

ν̄Aj(φj)

)

< θm+1

(
1− (J − 1)

ν̄2

Ak(φk)∑J
k=1

1
Ak(φk)

)
<

1

ν̄2
θm+1Pk(φ)

and

Ui(φ;µ) > θm

(
1− (J − 1)

1
Aj(φj)∑J

k=1
1

Ak(φk)

)2

= θm (Pj(φ))
2

Hence, Ui(φ;µ) ≥ Ui(φ
′;µ) holds if

1

ν̄2
θm+1Pk(φ) ≤ θm (Pj(φ))

2

or

µ =
θm+1

θm
≤ ν̄2

(Pj(φ))
2

Pk(φ)
.

Note that the RHS of the inequality above is also a function of µ. Let ψkj(µ) ≡ ν̄2
(Pj(φ))

2

Pk(φ)
− µ.

We have ψkj(0) > 0. If ψkj(µ) > 0 for all µ ∈ [0, 1], let µ̄kj = 1. If ψkj(1) < 0, then there

is a solution ψkj(µ) = 0 in interval [0, 1] since Ui(φ;µ) and Ui(φ
′;µ) are continuous. Let

µ̄kj be the smallest of these solutions, and let µ̄ ≡ mink,j=1,...,J µ̄kj. Then, for all µ ∈ [0, µ̄],

Ui(φ
′;µ) ≥ Ui(φ

′;µ) holds for all players i. Hence, the cyclical assignment over J teams is

stable for µ < µ̄.■

Calculations for Example 2. Let’s start with the complete sorting allocation. We need to

check if player 3 in team 1’s position 3 is head-hunted by team 2 for the top position. Under

complete ability sorting, we have

A1(θ) = a (θ1 + θ2 + θ3) = a

A2(θ) = νa

A3(θ) = ν2a

Thus, if all teams are active, we have

P1 = 1−
2× 1

A1

1
A1

+ 1
A2

+ 1
A3

= 1− 2

1 + 1
ν
+ 1

ν2

= 1− 2ν2

1 + ν + ν2
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and

usort3 =
µ2

1 + µ+ µ2

(
1− 2ν2

1 + ν + ν2

)(
1− 2µ2ν2

(1 + ν + ν2) (1 + µ+ µ2)

)
If player 3 moves to team 2, we have

A′
1 =

(
1

1 + ν + ν2
+

µ

1 + ν + ν2
+

νµ2

1 + ν + ν2

)
a

A′
2 =

(
1

1 + ν + ν2
+

νµ

1 + ν + ν2
+

νµ2

1 + ν + ν2

)
a

A′
3 = v2a

Then, we have

P ′
2 = 1−

2× 1
A′

1

1
A′

1
+ 1

A′
2
+ 1

A′
3

= 1−
2 1
1+νµ+νµ2

1
1+µ+νµ2 +

1
1+νµ+νµ2 +

1
ν2(1+µ+µ2)

and

u′3 =
1

1 + µ+ µ2

(
1−

2 1
1+νµ+νµ2

1
1+µ+νµ2 +

1
1+νµ+νµ2 +

1
ν2(1+µ+µ2)

)1−
2
(

1
1+νµ+νµ2

)2
1

1+µ+νµ2 +
1

1+νµ+νµ2 +
1

ν2(1+µ+µ2)


The complete sorting is stable if usort3 ≥ u′3:

µ2

(
1− 2ν2

1 + ν + ν2

)(
1− 2µ2ν2

(1 + ν + ν2) (1 + µ+ µ2)

)

≥

(
1−

2 1
1+νµ+νµ2

1
1+µ+νµ2 +

1
1+νµ+νµ2 +

1
ν2(1+µ+µ2)

)1−
2
(

1
1+νµ+νµ2

)2
1

1+µ+νµ2 +
1

1+νµ+νµ2 +
1

ν2(1+µ+µ2)


Second, we consider the cyclic assignment. In this case, as long as player 2 in team 2 does

not want to join team 1 to work with player 1, it is head-hunting-proof. Player 2’s payoff in

team 2 is

ucyc2 =
1

1 + µ+ µ2
× 1

3

(
1− 1

3

1

1 + µν + µ2ν2

)
If she moves to team 1, her payoff is

u′2 =
µ

1 + µ+ µ2

(
1−

2 1
1+µ+µ2ν2

1
1+µ+µ2ν2

+ 1
1+µν+µ2ν2

+ 1
ν+µν+µ2ν2

)

×

(
1−

2 1
1+µ+µ2ν2

1
1+µ+µ2ν2

+ 1
1+µν+µ2ν2

+ 1
ν+µν+µ2ν2

µ

1 + µ+ µ2v2

)
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We need ucyc2 ≥ u′2 for the cyclical assignment allocation to be stable:

1

3

(
1− 1

3

1

1 + µν + µ2ν2

)
≥ µ

(
1−

2 1
1+µ+µ2ν2

1
1+µ+µ2ν2

+ 1
1+µν+µ2ν2

+ 1
ν+µν+µ2ν2

)

×

(
1−

2 1
1+µ+µ2ν2

1
1+µ+µ2ν2

+ 1
1+µν+µ2ν2

+ 1
ν+µν+µ2ν2

µ

1 + µ+ µ2v2

)

We will show that both conditions are satisfied under µ = 0.9 and ν = 0.8. Player 3 in

the complete ability sorting allocation is usort3 = 0.3247, while if she takes the highest position

in team 2, she obtains u′3 = 0.29222. Thus, she does not have an incentive to move, and the

complete ability sorting allocation is stable. Now, the highest ability player under a cyclical

assignment allocation is ucyc2 = 0.28369, while if she moves to a second-ranked position, she

gets u′2 = 0.26949. Thus, she has no incentive to deviate.■
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