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Abstract

Lewbel and Pendakur (2021) propose a model of consumption inefficiency in col-

lective households, based on “cooperation factors”. We simplify that model to make it

empirically tractable, and apply it to identify and estimate household member resource

shares, and to measure the dollar cost of inefficient levels of cooperation. Using data

from Bangladesh, we find that increased cooperation among household members yields

the equivalent of a 13% gain in total expenditures, with most of the benefit of this gain

going towards men.
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1 Introduction

Starting from Becker (1981) and Chiappori (1988, 1992), among others, most collective

household models of consumption assume that the allocation and use of household resources

among household members is Pareto efficient. Efficiency greatly facilitiates the construc-

tion and estimation of models. In particular, efficiency allows consumption behavior to be

estimated without modeling the bargaining process used by household members to allocate

resources, and it means household demand functions are equivalent to each member maxi-

mizing their own utility function under a shadow budget constraint.

However, a drawback of these models in the development literature is that many exam-

ples exist of inefficient household behavior. An example is household members concealing

money from each other, even to the point of paying outside money holders, or using low- (or

negative) return savings instruments (e.g. Schaner 2015, 2017). Another example is actual

or threatened domestic violence, which is widespread in some cultures and countries (e.g.,

Bloch and Rao 2002, Koç and Erkin 2011, Ramos 2016, Hughes, et. al. 2015, and Hidrobo,

et. al. 2016).

Most models in the collective household literature assume all goods are either purely pri-

vate or purely public within the household (i.e., are either not shared at all, or are completely

shared). An exception is the model of Browning, Chiappori, and Lewbel (2013) (hereafter

BCL), which uses a “consumption technology function" to model the extent to which each

good is shared or jointly consumed. Lewbel and Pendakur (2021) (hereafter LP) propose a

model that extends BCL, by allowing for the presence of some types of inefficiencies, while

still maintaining all the modeling advantages associated with efficient household models.

Specifically, LP define “cooperation factors”, that affect the efficiency of a household.

Like distribution factors (see, e.g., Browning and Chiappori 1998), cooperation factors affect

how resources are divided amongst household members and does not affect each member’s

indifference curves over goods. But unlike distribution factors, cooperation factors may

also affect the extent to which household members share and jointly consume goods, and
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cooperation factors may also directly affect the utility levels of individual household members.

LP’s model preserve the advantages and properties of efficient household models, because

even inefficient households are still conditionally efficient, conditioning on the level of the

cooperation factor.

The BCL model is a very general collective household model, but it correspondingly has

very demanding data requirements for estimation, and these carry over to LP’s approach.

See, e.g., Lewbel and Lin (2021) for general theory on identifying and estimating the BCL

model with LP’s cooperation factors.

Dunbar, Lewbel, and Pendakur (2013) (hereafter DLP) propose a restricted version of

the BCL model that has far lower data requirements and is much simpler to estimate. In the

present paper we start from LP’s inefficiency model, and add assumptions similar to those

of DLP to obtain a practical empirical model that can be readily estimated with generally

available household-level consumer expenditure data. We prove this simplified LP model is

semiparametrically identified under the same mild data requirements as DLP.

We then apply our model to data from Bangladesh. Like DLP, we use the model to

identify and estimate separate measures of men’s, women’s, and children’s resource shares,

to evaluate the within-household distribution of consumption. Unlike previous applications,

our model allows for possible inefficiencies in shared consumption, and provides an estimate

of the cost of that inefficiency.

In our data (as in most data sets) we cannot directly observe how much family members

share or jointly consume goods. Instead, the cooperation factor f in our application is a

measure of the extent to which household members jointly make consumption decisions.

Specifically, our indicator f equals 1 if the decisions of how much to spend on food, clothing,

shelter, and health are each made jointly by the husband and wife in the household, and

zero otherwise. Our reasoning is that cooperating on how much to purchase of each type of

good is a logical prerequisite to, or a proxy for, coordinating and cooperating on how much

to share of each good. We also consider several analogous alternative proxies (based on time
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use and alternative cooperation measures) and obtain similar estimated effects.

Since f is a choice variable, and hence is endogenous, identification and estimation of

our model requires an instrument for f . This instrument must be a variable that correlates

with the household’s choice of f , but does not directly impact the household’s consumption

allocation decisions. We also need an instrument for total expenditures, which too can

be endogenous. For instruments we use household wealth, and village level leave-one-out

average of f , with the latter indicating village level prevalence or norms for cooperation.

We prove that, for model consistency, our instruments do not need to be randomly assigned

or measured without error. Instead, they only must satisfy some plausible separability

conditions based on the properties of our model.

In our baseline model, we find that households that cooperate more have a 13% gain in

efficiency. More precisely, if members of an inefficient household cooperated as much as those

in efficient households did, then the consumption utility of the members of the inefficient

household would be increased by an amount equivalent to giving that household 13% more

money to spend on consumption goods. Also, the share of household’s consumption resources

going to men in these more efficient households is about 2.7% greater than the share that

men get in less efficient, less cooperative households (with most of that gain coming from

lower children’s shares). Nonetheless, because the efficiency gain is large, all household

members still have a higher money-metric welfare in the more efficient households. A possible

explanation for this shift in resource shares is that men dislike the effort required to cooperate

and coordinate on joint consumption more than women do, and so require a greater share

of the returns from cooperating to induce them to do so.

In section 2 we provide a brief literature review. This is then followed by a very short

summary of both the BCL model and the LP extension to inefficient households. In Section

4 we derive our empirically tractable version of the LP model, and show that it is semipara-

metrically identified. Section 5 provides our empirical application of the model to households

in Bangladesh, and Section 6 concludes.
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2 Literature Review

Collective households models are those that assume that people, not households, have utility

functions, and that households are economic environments in which people live. Efficient

collective household models are those in which the people living in the household are assumed

to reach the Pareto frontier. To learn about people’s well-being within households, we need

to learn about those economic environments. Becker (1965, 1981) and Apps and Rees (1988)

provide examples of models that specify the entire economic environment of the household,

including bargaining processes, preferences and sharing or publicness of goods.

Chiappori (1988, 1992) showed that efficient collective household models are generic in

the sense that one need not specify the exact model of bargaining, preferences or sharing

to learn about the within-household allocation of resources. He additionally showed that

the assumption of Pareto efficiency is very strong: it implies that household decisions can

be decentralized to the individual level. In that decentralized representation, the budget

constraints faced by the household members summarize the economic environment of the

household. These individual-level budget constraints have individual shadow budgets that

define the consumption opportunities of individual household members. They also have

shadow prices that account for sharing (and thus scale economies) within the household.

A key component of collective household models are resource shares. Resource shares

are defined as the fraction of a household’s total resources or budget (spent on consumption

goods) that are allocated to each household member. A person’s shadow budget is their

resource share times the household budget. Resource shares are useful for several reasons.

First, they are closely (usually monotonically) related to Pareto weights, and so are often

interpreted as measures of the bargaining power of each household member. Second, they

provide a measure of consumption inequality within households: if one member has a larger

resource share than another member, then they have more consumption. Third, multiplying

the resource share by the household budget gives each person’s shadow budget. When

this shadow budget is appropriately scaled to reflect scale economies, we can compare it
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to a poverty line and assess whether or not any (or all) household members are poor. In

this paper, we identify and estimate resource shares allowing for possible inefficiency in

household consumption, and we identify and estimate a measure of the economic cost of

such inefficiency.

Resource shares and economies of scale are in general difficult to identify, because con-

sumption is typically measured at the household level, and many goods are jointly consumed

and/or shareable. Even the rare surveys that carefully record what each household member

consumes face difficulty appropriately allocating the consumption of goods that are some-

times or mostly jointly consumed, like heat, shelter and transportation. Models are therefore

generally required.

In this paper, we consider identification and estimation of resource shares in the ineffi-

cient collective household model of LP. Whereas most of the models of sharing in collective

households constrain goods to be either purely private or purely public within a household,

whereas we work with the more general model based on BCL, which also allows goods to

be partly shared. Indeed our notion of inefficiency due to endogenous variability in scale

economies requires a model with partial sharing. Models where goods are exogenously purely

public or purely public do not allow for variability in scale economies.

A number of models of noncooperative household behavior exist. Gutierrez (2018) pro-

poses a model that nests both cooperative and noncooperative behavior. Castilla and Walker

(2013) provide a model and associated empirical evidence of inefficiency based on informa-

tion asymmetry, that is, hiding income. Other evidence of income hiding includes Vogley

and Pahl (1994) and Ashraf (2009). Ramos (2016) has exogenously determined domestic vi-

olence that affects the efficiency of home production. Other noncooperative models include

Basu (2006) and Iyigun and Walsh (2007).

The model of LP is a two step program: first choosing the cooperation factor, and then,

conditional on that choice, optimizing consumption. It is thus similar in spirit to models

like Mazzocco (2007), Abraham and Laczo (2017), Chiappori and Mazzocco (2017), and
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Lise and Yamada (2019). Other models with analogous stages are Lundberg and Pollak

(1993), Gobbi (2018), and Doepke and Kindermann (2019). See also Lundberg and Pollak

(2003), and Eswaran and Malhotra (2011). The key featuure of LP is that it allows the

household’s objective function determining the cooperation factor to differ from its objective

in determining consumption. This difference makes general inefficiency possible.

The LP model is very general, but is difficult to estimate, requiring both price variation

and the estimation of nonlinear compound functions. These difficulties are also faced with

direct estimation of BCL’s very general model. DLP offer simplifying restrictions to BCL,

and in the this paper, we offer simplifying restrictions similar in spirit to those of DLP, that

allow identification and estimation of LP’s model using just Engel curve data. We use both

restrictions on how preferences vary across people like those in DLP, and restrictions on price

effects like those imposed in Lewbel and Pendakur (2008).

3 Inefficient Collective Household Models

This section summarizes Lewbel and Pendakur (2021: LP). The next section shows identi-

fication (semiparametric) and estimation of an empirically tractable model for estimation,

which forms the theoretical contribution of this paper. The following section then estimates

this model using Bangladeshi consumer expenditure data.

Essentially, LP modify Browning Chiappori and Lewbel (2013: BCL) to allow the degree

of sharing of goods (and therefore scale economies) to be a choice variable of the household,

which therefore opens the door to possible inefficiency in household consumption. Because

their modification does not alter the fundamental structure of the model, LP preserves all

of the useful properties of collective household models (including BCL) discussed earlier.

Let f denote a “cooperation factor”. A cooperation factor is an indicator of observable

behavior that affects the household’s level of cooperation and hence their level of sharing.

Sharing is what generates scale economies in this model: households that share more can

attain higher levels of member’s utility from a given level of household-level purchases. Thus,
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variation in sharing generates scope for variation in efficiency (and inefficiency). Let f be a

choice variable, and therefore possibly endogenous. For this discussion, we let f be binary,

where 0 indicates “low efficiency” and 1 indicates “high efficiency”. But in general f may

have many values and be continuous or discrete. All of the derivations in this and the next

section go through allowing the cooperation factor f to take many different values (where we

have normalized the most efficient case to be f = 1). However, in our empirical application

we will just let f take on two values, 0 and 1.

Let g denote the vector of continuous quantities of goods purchased by the household.

Let p denote the vector of market prices of the goods in g. Let y be the household’s budget,

where p′g = y is the usual linear budget constraint. Each household member j = m, f, c

(men, women and children) consumes (and gets utility from) their own quantity vector gj,

which BCL call “private good equivalents”. Let Uj be the part of utility that is influenced

by consumption gj, while uj depends on other factors f and v, where v is assumed to affect

the utility of sharing, but not directly affect the utility of consumption. The functions ωj

are the so-called “Pareto Weights” of each member.

The household chooses the vector g to purchase by solving the maximization

max
g1,...,gJ

∑J

j=1

(
Uj
(
gj
)

+ uj (f, v)
)
ωj (p, y, f) (1)

such that p′g = y, g = Af

∑J

j=1
gj

which gives each member j utility Uj
(
gj
)

+ uj (f, v).

Here, the square matrixAf characterises sharing. It says how much goods are shared and

therefore determines the household’s efficiency of consumption. Suppose Af were diagonal

(it need not be, but this case is useful for understanding sharing) and suppose J = 2. The

extent to which each element of g1 +g2 exceeds the corresponding element of g is the extent

to which that good is shared by household members. For example, suppose that g1, the first

element of g, was the quantity of gasoline consumed by a couple. If both household members
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shared their car (riding together) 1/2 of the time, then the houeshold needs to purchase less

gasoline that it would have to if there were no sharing. For example, Person 1 drives 100km

and person 2 drives 100km, but because 50km are driven together, the vehicle only drives

150km. Here, the upper left corner of the matrix A would be 3/4 (= 150/(100 + 100). This

3/4 summarizes the extent to which gasoline is shared; If the household members didn’t

share the car at all, they’d have to buy g11 + g12 units of gasoline, instead of only buying

g1 = (3/4) (g11 + g12) units.

Non-zero off-diagonal elements of Af allow the sharing of one good to depend on the

purchases of other goods, e.g., more gasoline might be shared by households that purchase

less public transportation. As a result, the model is also equivalent to some restricted forms

of home production, e.g., a household that wastes less food by cooperating and coordinating

on the production of meals could be represented by having a lower value of the k’th element

on the diagonal of the matrix Af , where gk is the quantity of purchased food. Roughly

speaking, “smaller A” means more sharing and therefore greater consumption by household

members.

The cooperation factor f appears in three places in this model. First, f affects sharing

through Af . Second, f appears in the Pareto weight functions ωj, showing its potential im-

pact on relative power, and the associated allocation of resources, among household members.

Third, member utility levels have a consumption component Uj
(
gj
)
and a non-consumption

component uj (f, v), and f directly affects member utilities through the uj functions. That

these components of utility (Uj and uj ) are additively separable is important to identification

in LP’s model.

The presence of the uj functions complicates the definition of efficiency. In particular,

f = 0 might maximize equation (1), and so is efficient in the sense of being on the household’s

Pareto frontier of member’s total utilities (Uj
(
gj
)

+ uj (f, v) for j = 1, ..., J). But at the

same time f = 0 could be inefficient in terms of just consumption, i.e., leading to a lower

shadow budget p′A−10 g, or equivalently, not being on the household’s Pareto frontier in
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terms of utilities of consumption only (Uj
(
gj
)
for j = 1, ..., J). To distinguish between these

efficiency concepts, LP define the latter as consumption efficiency and the former as total

efficiency.

To illustrate, if cooperating and coordinating consumption at the level A1 instead of A0

requires more effort, uj (1, v)−uj (0, v) may be negative, reflecting member j’s disutility from

expending that extra effort. Alternatively, uj (1, v) − uj (0, v) may be positive if member j

experiences direct joy or satisfaction from cooperating that more than compensates for the

extra effort that is involved.

LP show that resource share functions ηj for each member j depend on p, y and f , and

that the (typically unobserved) demand equations for each member j take the form

gj = hj (p′Af , ηj (p, y, f) y) , (2)

where the vector-valued demand function hj for each member j is determined by that mem-

ber’s utility function Uj. It follows that the (typically observed) vector-valued demand

functions for the household are

g = Af

∑J

j=1
hj (p′Af , ηj (p, y, f) y) (3)

Substituting in equations (2), the level of utility attained by member j, call it Rj, is therefore

given by

Rj (p, y, f, v) = Uj (hj (p′Af , ηj (p, y, f) y)) + uj (f, v) (4)

Recall that f is a choice variable, and that the household is conditionally efficient : con-

ditioning on the chosen level of f , equations (2), (3) and (4) hold.

LP assume that the household chooses f to maximize some function of the utilities of

the household members, that is,

f = arg max Ψ (R1 (p, y, f, v) , ...RJ (p, y, f, v)) . (5)
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for some function Ψ. The function Ψ could be exactly the Pareto weighted average of utility

functions given by equation (1),
∑J

j=1Rj (p, y, f, v)ωj (p, y, f), meaning that the household

uses the same criterion to choose f as it uses to choose consumption. At the other extreme,

just one member of the household, say the husband j = 1, might unilaterally choose f , so

Ψ just equals R1 (p, y, f, v). Or if the parents are choosing the level of f , then Ψ might

only contain the parent’s utility functions. However, if household members have caring

preferences, then even members who are not party to choosing f could have their utility

functions included in Ψ, so e.g. parents deciding f could put some weight on children’s

utility functions in Ψ.

If Ψ equals equation (1), so the household maximizes the same objective function in both

stages, then the household’s choice of f is by construction totally efficient, but it could still

be consumption inefficient. In contrast, if Ψ does not equal equation (1) (e.g., if only a

subset of household members choose f), then f could be inefficient by both definitions. We

will for convenience just to refer to f = 0 as inefficient, both because we don’t know Ψ, and

because, regardless of Ψ, f = 0 means the household is consumption inefficient. If we could

estimate this model, and in particular if we could estimate Af , we could calculate dollar

costs of inefficiency on consumption, such as the difference between p′A−10 and p′A−11 .

The upshot of LPs model is fourfold. First, allowing the cooperation factor f to af-

fect sharing through the matrix A leaves room for variation in the amount of sharing that

households do, and therefore for variation in the level of consumption that people can attain

within households (holding expenditure constant). Second, because the cooperation factor

is chosen through an optimization whose weights may differ from the Pareto weights that

characterize the conditionally efficient allocation, the household may not reach the Pareto

Frontier. That is, sharing may be chosen inefficiently. Third, because inefficiency running

through the matrix A still retains the additive structure of efficient BCL, the demand equa-

tions are identical to BCL demands that allow for variation in A across households. Fourth,

because A is a choice variable, it is endogenous.
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Given sufficient data, household demand equations (3) could mostly be identified and

estimated as described by BCL or by Lewbel and Lin (2021). The only additional complica-

tion for identifying and estimating the LP model described above would be accounting for

endogeneity of f .

4 Empirically Practical Identification and Estimation

To construct estimators of the above described LP model one must observe a great deal of rel-

ative price and total expenditure variation, and estimate many complicated, high dimensional

functions. Instead of directly implementing the LP model, we now propose some simplifying

assumptions, which then will allow us to obtain both semiparametric point identification of

the model and construct associated estimators that have much lighter computational and

data requirements.

Dunbar, Lewbel and Pendakur (2013: DLP) propose a restricted version of the BCL

model that greatly simplifies estimation. Here we propose restrictions, similar to those used

in DLP, to obtain a simplified version of the LP model that has the following advantages

for empirical work: 1) the model can be estimated using readily available “Engel curve”

data, that is, cross sectional data on expenditures without price variation; 2) the model

semiparametrically point identifies resource shares for children as well as adult household

members; 3) despite lacking price variation, the model still identifies the economic cost of

inefficiency; and 4) we extend the LP model to allow for both observed and unobserved

preference heterogeneity. We summarize our main results in the text here, and provide

formal assumptions, derivations, and point identification proofs in the Appendix.

As in DLP, our estimating equations are based on private, assignable goods. A good

is private if it is consumed by a single member and its diagonal element of the matrix A

equals one, meaning it cannot be jointly consumed at all. A good is assignable if the re-

searcher knows which household member consumes it. Assume that each household member

j consumes a quantity qj of some good that is private and assignable to member j, and let
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q = (q1, ..., qJ).1 Let π = (π1, ..., πJ) denote the vector of prices of these private assignable

goods.2 In addition to q, the household purchases a K vector of quantities of goods g (at

price vector p) which, as described in the previous section, is converted into the sum of

private good equivalents g1,...,gJ by the matrix Af .

In addition to introducing private assignable goods q, we further generalize the LP model

by allowing prices to affect uj (since there is no a priori economic reason for excluding

them, and like v, prices appearing in uj only affect the determination of f , not the demand

functions for goods). We also generalize LP by including additional observed household-

level demographic variables z (which can affect both tastes and Pareto weights) to allow for

observable heterogeneity across households. Taking all this into account, the LP model of

equation (1) becomes

max
g1,q1,...gJ ,qJ

∑J

j=1

[
Uj
(
qj, gj, z

)
+ uj (f, v, z,p, π, y)

]
ωj (f, z,p, π, y) (6)

such that p′g +
∑J

j=1
πJqj = y and g = Af

∑J

j=1
gj.

A further generalization is to include additional random variables to the model that cor-

respond to unobserved taste heterogeneity. To save notation, we defer that step to the

Appendix.

This model yields household demand functions for vectors of goods g and q, analogous

to those of equation (3). But for the private assignable goods q, these demand functions

greatly simplify, because for each private assignable good the quantity qj that is consumed

by member j is the same as the quantity purchased by the household. For these private
1Some results in DLP go through if these goods are only assignable but not private. So, e.g., when

food is the assignable good, it could still have a coefficient in the A matrix that doesn’t equal one (and so
technically isn’t private). This could arise if, e.g., food waste is lower in larger households. For simplicity,
we follow DLP, but our results could also be generalized to allow the assignable good to be non-private. See
Lechene, Pendakur and Wolf (2021). This would mainly entail extra notation, and adding some restrictions
to Assumptions A5 and A6 in the Appendix.

2In practice, the private assignable goods may have the same price for each member, making π1 = ... = πJ .
For example, the private assignable good could be rice if we observed how much rice each household member
eats, and rice has the same market price for all household members. As with DLP, some of the formal
assumptions of our model will be easier to satisfy when the private assignable goods all have the same price.
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assignable goods, the household demand equations arising from the household model of

equation (6) have the form

qj = Hj (p′Af ,π, z, ηj (p,π, y, f,z) y) (7)

where Hj is the Marshallian demand function for qj, the assignable good of person j that

comes from the utility function Uj
(
qj, gj, z

)
. Compared to the demand equations (3), which

give demands for all goods, the summation and multiplication by Af drop out of the demands

for private assignable goods given above.

Note that the resource share functions ηj may now depend on the additional variables π

and z that we’ve introduced into the model. But importantly, as a result of the household’s

consumption optimizing behavior and the separability between Uj and uj, the variable v

does not appear in this equation. This is what makes v be a valid instrument for f (see the

Appendix for details).

We now make some simplifying assumptions (again, details are in the Appendix) to

transform this model of price-dependent demand equations into a model of Engel curves

giving demands at fixed prices. First, we assume that the resource share function ηj does

not depend on y. This assumption is also made by DLP, who provide a range of theoretical

and empirical arguments in support of this assumption (see, e.g., Menon et al (2012).

Let Vj (πj,p, y,z) denote the indirect utility function corresponding to the maximization

of the direct utility function from consumption Uj
(
qj, gj, z

)
under the hypothetical linear

budget constraint qjπj + g′jp = y. The utility level over goods (which does not include the

uj component of utility) attained by member j in the household equals this indirect utility

function Vj evaluated at the household’s shadow prices Afp and member j′s shadow budget

ηj (π,Afp, f, z) y.

The second main simplifying assumption we make is that this attained level of indirect
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utility over consumption is semiparametrically restricted to have the form

Vj =
[
ln ηj (π,Afp, f, z) + ln y − ln sj (πj,p, z) + ε∗j (πj,p) + ln τ (Afp, z)

]
[mj (Afp, z)− β (z) lnπj]

(8)

for some functions sj, τ , mj, and β, where, without loss of generality ln τ (A0p, z) = 0. Here

ε∗j (πj,p) is an unobserved taste shifter, i.e., a random utility parameter.

The restrictions imposed by equation (8) have empirical support, e.g., the popular Deaton

and Muellbauer (1980) Almost Ideal Demand System model is a special case of equation (8).

This equation also satisfies the SAP (similar across people) restriction used by DLP, which

they show also has empirical support.3

The decentralization described in the previous subsections carries over to this model. As

shown in the Appendix, this allows us to apply Roys identity to equation (8) to obtain the

household’s demand functions for each private assignable good j. The resulting demand

functions are most conveniently represented in Engel curve form which relates the fraction

of expenditure spent on a good to total expenditure, at a fixed vector of prices. For each

person j, define wj = πjqj/y to be the fraction of household expenditure allocated to the

private assignable good of person j.

We will estimate our model using data from a single price regime, so both p and π are

treated as constants, which can then be absorbed into the functions that comprise the budget

share demand equations. After introducing random utility parameters, deriving the budget

share demand functions from equation (8) using Roy’s identity, and treating all prices as

constants, we obtain Engel curve functions that we show in the Appendix take the form

wj = ηj (f, z) [γj (z)− β (z) (ln y + ln ηj (f, z) + ln δ (f, z)) + εj] (9)

Here ηj (f, z) is member j’s resource share function, γj (z) and β (z) are functions represent-
3Equation (8) also implies restrictions on Af relative to the range of possible vectors p. These restrictions

are comparable to those imposed by other empirical consumer demand models. See Lewbel and Pendakur
(2008) and the Appendix for details.

15



ing variation in tastes, and εj is an error term that comes from ε∗j (πj,p), the unobserved

taste shifter (see the Appendix). Here, δ (f, z) is a money-metric inefficiency measure that

equals τ (Afp, z) at the fixed price vector p; it is a measure of the dollar costs of inefficiency

as described below.

We prove in the Appendix that the functions in equation (9) are each nonparametrically

point identified. This includes showing that the levels of the resource shares, ηj (f, z), and

the inefficiency measure δ (f, z), are nonparametrically identified.

Recall our assumption that the household uses equation (5) to choose f , i.e., the house-

hold maximizes some function of the utilities Uj + uj for some or all of the members j.

We show in the Appendix that in general the resulting value of f is endogenous (i.e., it is

correlated with εj), but also that v (even if not randomly assigned) is a valid instrument for

f . We discuss our instruments v in detail in the Data section.

Inspection of equation (9) shows that the cooperation factor f has two effects on house-

hold Engel curves for private assignable goods. One is that it affects resource shares ηj. The

second effect, which is based on Af , affects the Engel curve through the function δ (f, z).

Inspection of equations (8) and (9) shows that a change in ln δ (f, z) has the same effect on

utility and on budget shares as the same change in ln y. This then provides a dollar measure

of the unconditional efficiency loss (or gain) to the household resulting from choosing f 6= 1.

Since ln δ (0, z) = 0, a change from f = 0 to a level of f = 1 is equivalent, in terms

of consumption of goods, to a change in the household’s budget from y to yδ (f, z). The

change in sharing resulting from an increase in f has the same effect on demands, and on the

member’s attained utility levels over goods, as a corresponding change in total expenditures

y. The term δ (f, z) measures the size of this change. Note that although we identify and

estimate δ (f, z) using just the private assignable goods, this function actually measures

the impact of f on the efficiency of consumption of all goods, because it is equivalent in

everyone’s utility function to a change in the total budget y.

The model we estimate is based on equation (9) for each private assignable good j ∈
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{1, ..., J}. Recall that f is endogenous and has a valid instrument v. The budget y could

also be endogenous, for two reasons: first, because it’s a choice variable, and second, because

in our data, the observed y is partly constructed and so may contain measurement error.

Let r be a vector of observed variables that may affect the determination of y. If one

considers the dynamic optimization problem of the household, given the household’s income

and assets, we can assume the household first decides how much to spend on consumption

this period (that is, it first chooses y), and then uses the model of equation (6) to decide

what fraction of y to spend on buying each good. As a result, functions of the household’s

income or wealth are potential instruments for y. We assume εj is uncorrelated with r,

either because the measurement error in y is unrelated to r, or (if y is endogenous) because

εj is only based on random utility associated with the within period budget allocation, not

the utility of saving vs spending. This then makes the vector r be valid instruments for y.

Let r also contain v, so that r is a vector of instruments for both the cooperation factor f

and the budget y.

Dividing (9) by ηj (f, z) and rearranging yields conditional moments of the form

E

(
wj

ηj (f, z)
− γj (z)− β (z) (ln y + ln ηj (f, z) + ln δ (f, z)) | r, z

)
= 0 (10)

We show in the Appendix that all the functions in equation (9) can be nonparametrically

point identified from the conditional moments given by equation (10).

In our data, we have households with more than person of a given type j. Let Nj be the

number of members in the household of type j, and assume that the Nj members of type j

get an equal amount of the budget ηj(f, z)y assigned to type j. Thus, the household budget

share for the assignable good of any one member of type j is wj/Nj and resource share of

any one member of type j is ηj (f, z) /Nj. When implementing with data where there is

more than 1 person of each type, substitute ln ηj (f, z)− lnNj for ln ηj (f, z) in the moment

condition above (the Nj cancels when substituting into wj

ηj(f,z)
).4

4We have food consumption for each household member, and so could in theory estimate resource shares
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Given limitations on the size of the data set and complexity of the model, it is more

practical to estimate the model parametrically, as follows. By construction, the budget shares

wj give the share of the household budget y spent on the assignable good j (food, in our

empirical work below) for all the members of type j. Each of these members has a log-shadow

budget of ln y−lnNjh+ln ηj (f, z). Now, letting θ be a vector of parameters, we parameterize

each of the functions in equation (10), and incorporate Nj, to obtain unconditional moments

E

[(
wj

ηj (f, z,θ)
− γj (z,θ)− β (z,θ) (ln y − lnNjh + ln ηj (f, z,θ) + ln δ (f, z,θ))

)
φ (r, z)

]
= 0

(11)

Equation (11) holds for any vector of bounded functions φ (r, z). We construct an estimator

for θ by choosing functions φ (r, z) as discussed in the Appendix, and applying Hansen’s

(1982) Generalized Method of Moments (GMM).

We reiterate that, while equation (11) is only estimated for private assignable goods (food

in our empirical application), we obtain estimates of resource shares and the dollar cost of

efficiency that apply to all goods. We are not assuming, e.g., that a man’s spending on food

is proportional to his spending on other goods. He could, e.g., have a strong preference (or

need) for food, resulting in high food consumption, but still have a relatively low resource

share giving him little to spend on other goods. (An example would be if γj (z,θ) were

large but ηj (f, z,θ) were small.) The intuition for the identification is that, if you inverted

a single man’s Engel curve for food, you could see what his total budget for all goods must

be, based on how much he spends just on food. Analogously, by estimating each household

member’s Engel curves for food, we can back out what each member’s shadow budget for

all goods must be, and hence their resource shares. See DLP and Lechene et al (2021) for

further discussion of this intuition.

for each, rather than for total men, total women, and total children. However, that would then require
estimating a separate model for every possible household composition, e.g., a separate model for households
with 2 children vs those with 3.
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5 Application to households in Rural Bangladesh

5.1 Data

We use data from the 2015 Bangladesh Integrated Household Survey. This dataset is based

on a household survey panel conducted jointly by the International Food Policy Research

Institute and the World Bank. In this survey, a detailed questionnaire was administered

to a sample of rural Bangladeshi households. This data set has two useful features for

our model: 1) it includes person-level data on food consumption as well as total household

expenditures on food and other goods and services; and 2) it includes questions relating

to cooperation on consumption decisions. The former allows us to use food, a large and

important element of consumption, as an assignable good to identify our collective household

model parameters. The latter allows us to divide households into those that cooperate more

vs less on consumption decisions, which we treat as a cooperation factor.

The questionnaire was initially administered to 6503 households in 2012, drawn from a

representative sample frame of all Bangladeshi rural households. Of the 6436 households

that remained in the sample in 2015, we drop 13 households with a discrepancy between

people reported present in the household and the personal food consumption record, and 9

households with no daily food diary data, leaving 6414 households with valid data.

Define the composition of a household to be its number of aduult men, number of adult

women, and number of children (we define children as members aged 14 or less). To elimi-

nate households with unusual compositions, we select households that have at least 1 man,

1 woman and 1 child, and for which there are at least 100 households with the given com-

position in our data. The resulting sample consists of households with 1 or 2 men, 1 or 2

women, and 1 or 2 children, plus additional nuclear households with 1 man, 1 woman and

3 or 4 children. This eliminates roughly half of the 6414 households, leaving us with 3238

households with our selected compositions and valid data. Of these, we drop 328 house-

holds that report zero food consumption for either men, women or children, leaving us with
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3000 households in our final estimation sample. Households are indexed by h = 1, ..., H, so

H = 3000 in our main estimation sample.

The survey contains 2 types of data on food consumption: 7-day recall data at the

household level on quantities (in kilograms) and prices of food consumption in 7 categories:

Cereals, Pulses, Oils; Vegetables; Fruits; Proteins; Drinks and Others; and 1-day diary data

at the person level food intakes of quantities (and not prices) of the same categories.5 These

consumption quantities include home-produced food and purchased food and gifts. They

include both food consumed in the home (both cooked at home and prepared ready-to-eat

food), as well as food consumed outside the home (at food carts or restaurants). Thus, we

have the widest possible definition of food consumption.

We begin with the one-day recall diary of individual-level quantities of food in the 7

categories. These are the quantities of food that are consumed by each individual in the

household, and so do not include leftovers or food served to guests. These 24-hour person-

level food intakes are collected for each category for each of up to 19 household members. We

multiply each individual’s share of the household’s one-day quantities in each category by

household-level weekly quantity to get individual-level weekly quantity by category. These

are summed over the 7 categories and multiplied by village-level unit values (analogous

to prices, see Deaton 1997) to get total individual-level weekly expenditure on food, and

are multiplied by 52 to get individual-level annual food spending. Finally, we aggregate

individuals by type to yield adult male food spending, smh, adult female food spending, sfh,

and children’s food spending, sch.

Specifically, let Qph be the observed quantity (in kilograms) of category p, p = 1, ...7, for

household h and let Sph be the observed spending for the weekly food recall data. For each

household, the price paid per kilogram is Sph/Qph. Instead of using household level prices,
5Module O1 (Food Consumption) and Module X2 (Intra-Household Food Distribution) actually collect

food quantities and intakes, respectively, in nearly 300 categories. We aggregate these to 7 higher-level
categories to make more sensible unit-values (described below). Module O1 gathers information from the
female enumerator (who responds to most of the survey instrument); Module X2 gathers information from
the female responsible for cooking that day. From Module X2, we use the weight of ingredients, rather than
cooked weights, in our aggregation procedure.
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we follow Deaton (1993) and use village-level unit values to aggregate up to household-

level food spending by category. Let πp be the village-level unit value equal to village-level

aggregate spending divided by village-level agregate quantity, πp =
∑

h Sph/
∑

hQph, where

the summation is over all the households observed in a village. Let q̃jph be the observed

quantity of category p for all people of type j in household h from the one-day diary data.

One-day diary data do not include spending data. For each household, we take shares of

each category,
(
q̃jph/

∑
j q̃jph

)
, and attribute to each type of person j their share of weekly

quantities in each category, multiply these by the unit value of that category, multiply by

52 to generate food spending by type: sjh = 52 ∗
∑

p πp

(
q̃jph/

∑
j q̃jph

)
Qph.

Note that all references to the “village level” in this paper actually refer to data collected

at the Upazila level, which are official administrative units in Bangladesh, one level below

the district. There were 492 Upazilas in Bangladesh in 2015, of which 281 are represented

in this exclusively rural dataset.

The model uses assignable good budget-shares of household-level total expenditure. Our

household-level total expenditure measure is equal to twelve times the sum of household-level

monthly spending, including imputed consumption of home produced goods. These spend-

ing levels derive from one-month duration recall data in the questionnaire. Specifically,

this includes monthly-level recall data on purchases and home-produced values of: rent,

food, clothing, footwear, bedding, nonrent housing expense, medical expenses, education,

remittances, devotional/sacrificial goods6, entertainment, fines and legal expenses, utensils,

furniture, personal items, lights, fuel and lighting energy, personal care, cleaning, transport

and telecommunication, use-value from assets, and other miscellaneous items. This con-

structed total expenditures variable, denoted yh, represents the total flow of consumption of

goods and services into the household, which includes purchases, home produced goods and

consumption flows from assets. The assignable food budget-shares of each type of person,

j = m, f, c, are denoted wjh and are given by wjh = sjh/yh.
6These are: jakat, fitra, daan, sodka, kurbani, milad, and other religious offerings.
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Our models are also conditioned on a set of demographic variables zh. We include several

types of observed covariates in zh. We condition on household size and structure, defined as

a set of 10 dummy variables covering all combinations of 1 or 2 men, 1 or 2 women, and 1

or 2 children plus the additional nuclear families consisting of 1 man, 1 woman, and 3 or 4

children. The left-out dummy variable is the indicator for a household with 1 man, 1 woman

and 2 children (the largest single composition). We call this particular nuclear household

type the reference composition.

We also include other variables in zh that may affect both preferences and resource shares:

1) the average age of adult males divided by 10; 2) the average age of adult females divided

by 10; 3) the average age of children divided by 10; 4) the average education in years of adult

males; 5) the average education in years of adult females ; 6) the fraction of children that

are girls minus 0.5; and, (7) the log of marital wealth (aka: dowry). We do not normalize

dichotomous composition variables or the fraction of girl children. However, we normalize

all other elements of z to be mean-zero for households with the reference composition.

Together the above normalizations give zh = 0 for a reference household defined by refer-

ence composition and all covariates equal to the mean values for the reference composition.

We also normalize the log of household expenditure, ln yh, to be mean 0 for the reference

composition. All these normalizations simplify the economic interpretation of our estimated

coefficients, since by these constructions the coefficients directly equal either estimates of the

behavior of the reference household type, or (in the case of coefficients of zh) they describe

departures from the reference household’s behavior.

In our empirical application, we take the cooperation factor for household h, fh, to be

an indicator of cooperation on consumption decision making. Specifically, our recall survey

asks of the female respondent: “Who decides how to spend money on the following items?”

The items we look at are food, clothing, housing, and health care, and the response options

are “self”, “husband”, “self and husband”, or “someone else”. We take fh = 1, indicating a

more cooperative household, if the answer for all four of these consumption categories is,
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“self and husband”. Otherwise, the household is assigned the less cooperative fh = 0. Our

reasoning is that cooperating on how much to purchase of each type of consumption good is

a logical prerequisite to cooperating on how much to jointly consume of each good. We also,

for comparison, consider two other measures of cooperation as possible cooperation factors

(see discussion of Table 4 below for details).

In addition to the above covariates, our model has a vector of instruments rh that consist

of powers of log household wealth, and powers of the village-level (leave-one-out) average

value of f . We assign a wealth of 1 Taka to the 165 households reporting zero wealth, so that

(unnormalized) log household wealth is defined for all observations. Like with the covariates

zh, we normalize log-wealth to have an average of zero for the reference household. We do

not normalize village-level average f .

Table 1a gives summary statistics regarding household structures. The 10 summarized

household structures each correspond to a dummy variable included in the list of demographic

shifters zh (except for the omitted reference household). Nuclear households (with only 1

adult male and 1 adult female) account for roughly half of the households in our sample.

Roughly 30 per cent of households have 3 adults.

Table 1b gives summary statistics on the log of household expenditures ln yh, assignable

food budget shares wjh, additional demographic shifters (the elements of zh other than

household structure dummies), the cooperation factor fh, and our instrumental variables.

Recall that all continuous regressors (except the fraction of girls) and instruments are nor-

malized to average zero for households with 1 man, 1 woman and 2 children. However, they

do not average zero for the entire sample. We measure age and education in decades, and

total expenditure, marital wealth, household wealth and income in Taka, the currency of

Bangladesh. These units are chosen to keep the standard deviations of dependent variables,

covariates and instruments roughly comparable.

We note a couple of important features of these data. First, the assignable good budget

shares (wmh, wfh and wch) are large; roughly 10 per cent of the household budget goes to each
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of these assignable food aggregates. This is in sharp contrast to other research identifying

resource shares from assignable goods (e.g., Calvi 2019; Lechene et al 2021) that uses clothing

instead of food as the assignable good, where clothing shares may be less than 1 per cent of

the household budget. Second, the cooperation factor fh has a mean of 0.59. The village-

level leave-out average of f has a standard deviation of 0.493, which suggests that much of

the variation in f is at the village level.

5.2 Instruments

Our model has two endogenous regressors: the log of household total expenditures, ln yh, and

the cooperation factor fh. As discussed earlier, if we assume that the consumption allocation

decision in our model is separable from the decision of how to allocate household income

between total consumption and savings, then functions of household wealth are valid instru-

ments for ln yh. This time separability is a standard assumption in the consumer demand

literature, including in collective household models (see, e.g., Lewbel and Pendakur 2008).

We discuss time separability formally in the Appendix. Another reason yh could potentially

be endogenous is measurement error, stemming from, e.g., purchase mismeasurement, or

infrequency of expenditures on some consumption items. Functions of wealth are also valid

instruments for dealing with expenditure measurement issues (see, e.g., Banks, Blundell, and

Lewbel 1997).

Now consider instruments for fh. We do not attempt to specify and estimate this equa-

tion, so we need an instrument vh for fh. This instrument does not need to be randomly

assigned, but it does need to correlate with the choice of fh, while not (after conditioning

on other covariates) directly affecting the household’s food consumption decisions (in terms

of the model, vh must appear in one or more of the uj functions, but not appear in the

functions Uj and ωj for j = 1, ..., J).

Our primary instrument for fh is the leave-one-out village level average value of f (the

average excluding household h). The idea is that variation in the local prevalence of families
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whose members cooperate on consumption decisions is likely to correlate with an individual’s

own decision to likewise cooperate. Roughly, village level average f (leaving out household

h) is a valid instrument in our model if the choice of f in households other than household

h is unrelated to the unobserved preference heterogeneity in member’s demand functions for

food in household h. See the Appendix for a formal definition of conditions under which this

instrument is is valid.

For estimation, we do not need to distinguish which elements of the instrument list rh

are intended to be specifically instruments for fh vs for yh (i.e., elements of v vs elements of

r̃ in the Appendix). In particular, though we argue that fh should primarily correlate with

fh and wealth should primarily correlate with yh, either or both could affect both. Moreover,

since we do not know the functional forms by which fh and yh depend on fh and wealth, we

let our instrument list rh consist of r1h and r2h, where r1h consists of the first through fourth

powers of fh and r2h consists of the first through fourth powers of log wealth. We use these

powers to flexibly capture how fh and yh might depend on these instruments. Descriptive

statistics for our instruments are given at the bottom of Table 1b.

If our model were linear, then our nonlinear GMM estimator would (apart from weight-

ing matrix) reduce to a linear two stage least squares. The first stage of that two stage

least squares would consist of regressing the endogenous f and ln y on the instruments and

exogenous regressors.

To assess the strength of our instruments, we ran those first stage linear regressions. In

Table 2 we give regression estimates and associated standard errors from a linear regression

of our endogenous regressors, fh and ln yh on our 18 demographic variables zh and our 8

instruments rh. Standard errors are clustered at the village (i.e., the Upazila) level.

Table 2 shows that fh is difficult to predict, with an R2 of just 0.17, but the instruments

collectively appear strong, in that the F-statistic for the relevance of the instruments (con-

ditional on covariates) is 62. As expected, the village-level average instruments do most of

the work here, with an F-statistic of 121, and the log-wealth instruments are also jointly
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insignificant in this equation. The low R2 of this regression emphasizes the point that we

can’t (and don’t try to) actually model the decision to cooperate. All we need are sufficiently

strong instruments, which our F-statistic indicates is the case (being, e.g., much larger than

the rule of thumb level of 10).

Although we can’t treat this regression as a formal model of cooperation, it is still sug-

gestive regarding covariates. The regression shows that village level average cooperation is

positively correlated with a household’s individual decision to cooperate fh, as expected. It

is also positively correlated with the education of women and age of children, and negatively

correlated with the age of women, suggesting that it may respond to women’s bargaining

power.

The household log budget ln yh is fitted with an R2 of 0.43 and an F-statistic of the

instruments of 101. Here, the log-wealth instruments do most of the work, with an F-

statistic of 186. But, the cooperation instruments are also relevant in this equation, with an

F -statistic of 9.

The above results provide evidence for the relevance our instruments. For further reassur-

ance that the instruments are valid for our model, we later the exogeneity of the instruments

via overidentification tests.

5.3 Parametric Specification

By equation (11), our estimator applies GMM to estimate the parameter vector θ using

moments of the form E (εjhφ (rh, zh)) = 0 where the errors εjh are given by

εjh =
wjh

ηj (fh, zh,θ)
− γj (zh,θ)−β (zh,θ) (ln yh − lnNjh + ln ηj (fh, zh,θ) + ln δ (fh, zh,θ)) .

(12)

In our most general specification, the functions ηj, γj, δ and β are specified as

ηj (fh, zh,θ) = kj0 + k′jzh + cjfh,

26



γj (zh,θ) = lj0 + l′jzh,

ln δ (fh, zh,θ) = (a0 + a′1zh) fh,

and

β (zh,θ) = b0 + b′1zh.

The vector θ is therefore defined as all the coefficients in a0,a′1, b0, b
′
1, kj0,k

′
j, cj, l0, and l

′
j for

j ∈ {m, f, c} (for adult males, adult females and children). Note the definition of δ enforces

the restriction that ln δ = 0 when fh is zero. To impose the constraint that resource shares

sum to one, we impose
∑

j∈{m,f,c} kj0 = 1,
∑

j∈{m,f,c} kj = 0, and
∑

j∈{m,f,c} cj = 0.

In our baseline specification we take a1 = 0 and b1 = 0 (we relax these restrictions in

other specifications). We are particularly interested in the estimates of cj, which gives the

response of the resource shares to fh, and the estimate of a0, which gives the response of the

household scale economies to fh.

Our moment equations (11) require a vector of functions φ (rh, zh). In theory, any vector

of functions satisfying the rank condition for identification would suffice. For statistical effi-

ciency (i.e., smaller standard errors), one wants to choose functions that are highly correlated

with the structural components of the model. In our baseline specification, scaled budget

shares wj/ηj(fh, zh) are close to linear in (1, fh, zh)× (1, ln yh), where × indicates element-

wise multiplication, deleting redundant elements. We therefore want to choose φ (rh, zh) to

be highly correlated with the elements of (1, fh, zh) × (1, ln yh). So, we replace fh with r1h

and ln yh with r2h in that expression to get

φ (rh, zh) = (1, rh, zh)× (1, r2h) .

This yields a vector φ (rh, zh) with 105 elements (including the constant), for each of

three demand equations, resulting in a total of 315 moments for GMM estimation. Our

baseline model has 89 parameters, so our model is overidentified (has more moments than
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parameters). The use of village-level instruments can induce correlations in the moments

across households within village, so we report standard errors that are clustered at the village

level.

5.4 Model Estimates

Our main GMM estimation results are given in Tables 3 to 5. In these tables we focus on a

subset of the most relevant coefficients. The full set of baseline model parameter estimates

are reported in the Appendix in Table A2.7 The standard errors in these tables are all

clustered at the village level.

Identification requires exogeneity of the instrument vector φ (r, z). The bottom rows of

Tables 3 to 5 present estimated J test statistics to assess this exogeneity restriction. The

J−tests are tests of the hypothesis that the elements of φ (r, z) are all uncorrelated with the

errors εj.

We have scaled and normalized the regressors as described earlier, so that the estimated

coefficients a0, kj0 and cj in Tables 3, 4, and 5 equal the values of the functions of interest

for the reference household type z0 (1 man, 1 woman and 2 children, with z = 0). In the

first row in each of these tables, we provide estimates of a0, which equals ln δ (1, z0, θ) for

the reference household, i.e., the response of log-efficiency to f (more precisely, the percent

change in total budget y that would be equivalent to the gain in efficiency associated with

f = 1). The next rows provide kj0 = ηj(0, z0) and cj = ηj(1, z0)− ηj(0, z0) for each member

type j in the household. These equal, for the reference household, member j’s resource share

when the household is inefficient, and the change in that resource share if the household

switched to being efficient.

The next block of rows report, for each type j, the proportional difference in type j’s

shadow budget between f = 0 and f = 1. This is the effect of cooperation on type j’s money
7A previous version of this paper included an indicator of domestic abuse as a cooperation factor and

log-wealth as a regressor. In Appendix B Table A1, we include these variables in the covariate list z. Their
inclusion does not affect our major conclusions.
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metric consumption utility. When f = 0, the shadow budget of type j is ηj(0, z)y. When

f = 1, the efficiency gain is equivalent to raising the household’s budget from y to δ(1, z)y,

and type j’s resource share changes to ηj(1, z). Together, these mean type j’s shadow budget

when f = 1 becomes ηj(1, z)δ(1, z)y. The relative change in type j’s money metric utility

in going from an inefficient to an efficient household is therefore

∆j money metric =
ηj(1, z)δ(1, z)− ηj(0, z)

ηj(0, z)

Equivalently, if the household switches from inefficient to efficient, member type j’s shadow

budget is multiplied by ∆j. If ∆j > 0, then type j’s utility over consumption goods increases

if the household chooses the efficient f = 1 instead of f = 0. In the language of BCL, ∆j

is the indifference scale for person j between living in a household with f = 1 vs that same

household with f = 0. We report ∆j for each member type j is reported in the third block

of rows. Finally, as noted above, the bottom row of each of these tables gives J tests of

instrument validity.

Table 3 has 3 blocks of columns. The leftmost block of columns presents results from

estimation of our baseline model. In the baseline model, all demographic variables z are

included in γj(z), and ηj(f, z) but a1 = 0 and b1 = 0, so that β and δ take the simplest

possible forms, β (zh,θ) = b0 and ln δ (f, z,θ) = a0fh.

The top cell of column (1) in Table 3 gives the estimate of a0 as 0.121, equivalent to

δ (1, z,θ) = exp a0 = 1.13, which means that changing f from zero to one increases efficiency

by an amount equivalent to increasing the household’s total expenditures budget y by 13

per cent (equals exp (0.121)− 1). Note that while we expected, and obtained, δ (1, z,θ) > 1

(more efficient consumption when f = 1), this inequality was not imposed upon estimation.

The next block of column (1) gives estimates of resource shares, specifically, the constant

terms equal the estimated resource shares for a household comprised of one adult male, one

adult female and two children, when the cooperation factor f = 0. These estimates say that

in these households the man gets 31 per cent of household resources, the woman gets 33
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per cent, and the two children split the remaining 36 per cent. These estimates are similar

to what DLP found in poor households in Malawi, and to what Brown, Calvi and Penglase

(2018) find when applying the DLP model to Bangladesh data.

The estimated values of cj in this block give the marginal effects of f on resource shares.

These show that cooperation increases men’s resource shares by 2.7 percentage points, and

lowers women’s and children’s shares by 0.5 and 2.2 percentage points, respectively. Although

these estimated effects on resource shares are small, they have z statistics of 5.4, 1.1 and

3.2 for men, women and children, respectively. So, the estimated effects are statistically

significant for adult males and for children. One possible explanation for these results could

be that men dislike the effort associated with consumption coordination and cooperation

more than women, and so must be given a larger share of the gains from cooperation than

other household members, to induce them to cooperate.

The third rows of estimates give ∆j, the net effect of cooperation on the shadow budget

(money metric utility) of each household member type j. Men’s gain in money metric utility

from cooperating is large, with an estimated gain of about 23 per cent. Their gain is large

because they gain both from greater efficiency and because their resource share increases (i.e.,

they get a proportionally larger slice of a larger pie). In contrast, women and children lose

in resource share, but gain even more from efficiency (a smaller slice of a larger pie), so the

net effect of cooperation is positive for them as well. Women gain a statistically significant

11 per cent in their money metric, and children gain a marginally statistically significant 6

per cent. Since all members gain in money metric utility from cooperation, the reason that

many households do not cooperate must be due to the direct disutility experienced by one

or more household members from the effort (or other aspects) of cooperating. In terms of

the model, having f = 1 empirically increases Uj for all members j, so it must therefore

decrease uj for at least one member in any household that chooses f = 0.

The middle and rightmost panels of Table 3 report estimates of resource shares and

efficiency measures for two alternative model estimates. In the middle columns, labelled
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“varying β”, we relax the assumption that β is fixed by replacing β (zh,θ) = b0 with

β (zh,θ) = b0+b′1zh. The general patterns we observe in our baseline estimates are still seen

here, but with larger standard errors (presumably because of multicollinearity—β multiplies

ln η, and now both functions vary with z).

GMM estimators based on many more moments than parameters can have poor finite-

sample performance, due to imprecision in estimation of the GMM weighting matrix. To

check for this possibility, in the rightmost columns of Table 3, labelled “less overidentifi-

cation”, we re-estimate the baseline model using only the first and second powers of log

household wealth and village-average f as instruments. This reduces the number of ele-

ments of φ (rh, zh) to 57, which reduces the total number of GMM moments from 315 to

171 (the number of baseline model parameters is still 89). As expected, this use of fewer

moments means less identifying power and hence mostly larger standard errors. However,

the direction of results remains unchanged: Cooperating increases men’s resource shares at

the expense of women and (mainly) children’s shares, but everyone’s money metric utility is

increased. Given the similarity in results, we do not see evidence of significant finite sample

issues regarding GMM estimation of the baseline model.

In our discussion of Table 2, we argued that our instruments are relevant. To provide

some evidence that our instruments are also valid, at the bottom of Table 3 we give estimated

values of Hansen’s J-statistic. These are tests of the hypothesis that the instruments are

jointly exogenous. We give the value of the J-statistic, its degrees of freedom and p-value.

The estimated p-values of 0.23, 0.24 and 0.77. None are close to 0.05, so we do not reject

the null of instrument validity in any of the models.

In Table 4, we consider 3 alternatives for our cooperation factor f . The idea here is

that f is a proxy for cooperation, and so other proxies related to cooperation should behave

similarly. In the leftmost column, labeled (4), we use a weaker definition of f , setting it equal

to 1 if the woman reports that consumption decisions regarding housing are made jointly, and

0 otherwise. In our baseline case, it equals 1 if additionally, consumption decisions regarding
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food, health care and clothing are made jointly. This alternative definition focusses on

shelter, the most shareable of these goods. In comparison to the baseline, we see essentially

the same estimates, though with a slightly larger estimate of ln δ and slightly larger estimated

standard errors.

In column (5), we turn to a different type of proxy for cooperation. In the theory

section above, our examples of sharing in the household consumption technology sometimes

depended on simultaneous usage of a shareable good by multiple household members (such

as shared vehicles). The BIHS collects a 24-hour time use diary for the husband and wife,

accounting for 24 different activities/time uses in each of 96 fifteen-minute time-blocks. We

define shareable consumption time uses as: eating/drinking; commuting; travelling; watching

TV/ listening to radio; reading; sitting wiith family; exercise; social activities; hobbies; and,

religious activities. These activities are time-uses that are amenable to joint consumption. In

column (5), we present estimates from a model identical to the baseline specification except

that the cooperation factor f is defined to be a dummy variable equal to 1 if the husband

and wife spent any time during the 24-hour diary doing the same shareable consumption

activity at the same time. The resulting estimates that are similar in spirit to our baseline

estimates. However, they are not identical: the estimated consumption efficiency gain due

to cooperation is a bit larger, with an estimated value of ln δ of 0.141, and the estimated

effect of cooperation on male resource shares is larger, increasing male resource shares by

4 percentage points. This results in larger effects on money-metric welfare: in the baseline

estimates, men’s welfare increased by roughly 20 per cent; in column (5), we see an estimated

impact exceeding 30 per cent.

In column (6), we allow for a broader definition of time-uses amenable to cooperation.

We define non-private time uses as: all shareable consumption time-uses; school (including

homework); shopping/getting service; weaving/textiles; cooking; domestic work; and, caring

for children/elderly. In column (6), we present present estimates from a model identical

to the baseline specification except that the cooperation factor f is defined to be a dummy
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variable equal to 1 if the husband and wife spent any time doing the same non-private activity

at the same time. Here, we see a much smaller, and statistically insignificant estimate, of ln δ

equal to 0.056. However, the estimated marginal effects of the cooperation factor on resource

shares are essentially equal to those in column (5). Consequently, we see smaller effects on

money-metric welfare, driven by the smaller efficiency effect of cooperation. Our takeaway

is that our specific choice of cooperation factor in the baseline specification (joint decisions

on consumption choices on food, shelter, health care and clothing) is not idiosyncratically

driving our findings. Other reasonable choices for the cooperation factor yield similar results.

We consider the possibility that δ depends on household size in Table 5. The function δ,

which gives the percentage cost of inefficiency associated with the cooperation factor f = 0

vs the efficient f = 1, is a novel feature of our model. In Table 5, we consider alternative

specifications for this cost of inefficiency function. The leftmost block of Table 5, column

(10), imposes the restriction a0 = a1 = 0, which makes ln δ = 0. This specification imposes

the constraint that f does not affect efficiency, and so makes f a distribution factor but not

a cooperation factor. Column (11) allows the economies of scale associated with f to vary by

household size. In this specification, ln δ (fh, zh, θ) =
(
a0 + a1 ln n

4

)
fh. This maintains the

construction that ln δ = a0 for the reference household, which has n = 4 members. Finally,

in the third block of Table 5, column (12), we let a1 be a vector of coefficients on household

size and on all the elements of z except the household composition dummies.

Consider first column (10) where we don’t allow for any inefficiency. The estimated

values of the constant terms in resource shares are virtually identical to those of our baseline

specification (estimates (1)), and the estimated marginal effect of f on these resource shares

is the roughly the same in these two specifications. This suggests that leaving out the

inefficiency channel does not substantially bias estimates of the levels of resource shares8.

The estimated value of a0 in column (11) indicates that a nuclear family with 4 members
8This is reassuring for previous applications of similar models like DLP that don’t allow for inefficiency,

suggesting that those models will still do a good a job of estimating resource shares, even if they miss the
effects of inefficiency.
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has an efficiency gain δ of 10 per cent with cooperation. But the estimated value of the

scalar a1 is large, at about 0.5, implying much larger efficiency gains in larger households.

For the largest households in our sample, which have 6 members, the predicted efficiency

gain is exp
(
0.100 + 0.501 ln 6

4

)
− 1 = 35 per cent. For the smallest households in our sample

(nuclear family with 3 members), the efficiency gain is statistically indistinguishable from

zero. 9

In column (12), we allow δ to depend additionally on all other demographics (apart from

household composition). Here, we see that the large size of the coefficient a1 on ln n
4
shown

in column (8) is not driven by the exclusion of other demographic shifters to δ. However,

the estimated standard errors on a0 and a1 are noticeably larger in column (9), presumably

due to multicollinearity with having the same z variables appearing in multiple functions in

the model.

The bottom panel of Table 5 gives estimates of the change in the money metric of

consumption utility for each type of person in response to cooperating. The upper rows

give an estimate of this welfare loss of people in the reference household type; the lower row

give an estimate of this welfare loss for the largest households (nuclear households with 4

children). For the model where δ = 1 shown in column (10), these welfare gains and losses

are equal to the changes in resource shares, since in that model imposes no variation in

efficiency.

The estimates given in column (11) of the proportionate changes in money metric utility

due to cooperation for the reference household are similar to those reported in the baseline,

with men, women and children gaining roughly 20, 9 and 5 per cent, respectively. For people

living in the largest households, the efficiency gains are larger, so the money metric gains are

also larger. In these largest households, the estimated money metric gains for men, women

and children are 46, 32 and 30 per cent, respectively.
9This is a very strong dependence on household size, but well within the bounds allowable by the model.

Specifically, BCL implies Barten scales between 1/n and 1, which we can use to calculate an approximate
maximum value for δ of 1

2 lnn.
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For interested readers, we consider 3 other robustness-oriented exercises in Appendix

Table 3. They did not yield any interesting economic insights.

We have three main bottom line empirical results. First, we find that our measure

of cooperation f is indeed a cooperation factor, i.e., it affects the efficiency of household

consumption and it affects resource shares. We find efficiency gains due to increased sharing

and cooperation on the order of 13 per cent or more of the household’s total budget, and

increased cooperation increases men’s resource shares by about 2.7 percent, at the expense

of women and (mostly) children. Second, we find that net effect of these shifts is that

cooperation increases money-metric utility from consumption for all household members,

but it proportionally increases men’s money-metric utility far more than that of women and

children. Third, we find evidence that the efficiency effects are largest in larger households,

which is consistent with a model where the opportunities for sharing increase in the number

of household members.
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Tables

Table 1a: Distribution of Household Structures
men women children variable name mean

1 1 1 m1_f1_c1 0.189
2 constant 0.255
3 m1_f1_c3 0.101
4 m1_f1_c4 0.030

1 2 1 m1_f2_c1 0.087
2 m1_f2_c2 0.085

2 1 1 m2_f1_c1 0.079
2 m2_f1_c2 0.054

2 2 1 m2_f2_c1 0.071
2 m2_f2_c2 0.048

Statistics are for the 3000 observations of households from the BIHS 2015 comprised of nuclear households
with 1-4 children plus households with 2 men or 2 women and 1 or 2 children. The sample includes only
households with consistent food data with nonzero food spending in the 24-hour food diary for each type of
household member (men, women and children).

Table 1b: Summary Statistics
Variable Mean Std Dev Min Max

ln y, log-expenditure 0.100 0.556 -1.681 2.764

wm, male food share 0.161 0.070 0.014 0.514
wf , female food share 0.145 0.065 0.013 0.534
wm, children food share 0.130 0.080 0.001 0.488

average age of males/10 0.176 1.189 -2.258 6.042
average age of females/10 0.377 0.937 -1.322 5.878
average education of men/10 0.338 3.537 -3.500 6.500
average education of women/10 -0.359 3.186 -4.366 5.634
average age of children/10 0.045 0.359 -0.709 0.691
fraction girl children -0.028 0.414 -0.500 0.500
log of marital wealth -0.416 3.368 -8.742 5.630

f , cooperation indicator 0.585 0.493 0.000 1.000

log of household wealth 0.088 2.684 -9.403 4.356
village-average of f 0.585 0.261 0.000 1.000

Statistics are for the 3000 observations of households from the BIHS 2015 comprised of nuclear households
with 1-4 children plus households with 2 men or 2 women and 1 or 2 children. The sample includes only
households with consistent food data with nonzero food spending in the 24-hour food diary for each type of
household member (men, women and children). Village-average of f is the leave-one-out average (for each
household, the average of f of other households in the village).
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Table 2: "First Stage"
cooperation, f log-budget, ln y
est std err t est std err t

Constant 0.178 0.042 4.24 0.039 0.039 1.00

Covariates average age of males/10 0.002 0.008 0.25 -0.005 0.007 -0.72
average age of females/10 -0.022 0.012 -1.92 0.016 0.011 1.43
average education of men/10 -0.006 0.003 -2.21 0.025 0.003 9.55
average education of women/10 0.011 0.003 3.31 0.032 0.003 10.18
average age of children/10 0.067 0.025 2.68 0.116 0.024 4.92
fraction girl children -0.020 0.020 -0.98 0.038 0.019 2.05
log of marital wealth 0.002 0.003 0.61 0.004 0.002 1.62

Composition m1_f1_c1 -0.018 0.025 -0.72 -0.139 0.024 -5.87
m1_f1_c3 0.059 0.031 1.93 0.052 0.029 1.82
m1_f1_c4 0.005 0.051 0.10 0.119 0.047 2.51
m1_f2_c1 -0.106 0.033 -3.17 0.111 0.031 3.54
m1_f2_c2 -0.028 0.034 -0.83 0.162 0.032 5.10
m2_f1_c1 -0.052 0.036 -1.47 0.056 0.033 1.68
m2_f1_c2 0.035 0.040 0.87 0.189 0.037 5.07
m2_f2_c1 -0.097 0.036 -2.68 0.284 0.034 8.42
m2_f2_c2 -0.098 0.042 -2.31 0.265 0.040 6.69

budget ln real wealth -0.005 0.010 -0.47 0.095 0.009 10.19
instruments squared 0.000 0.004 -0.03 0.037 0.003 11.20

cubed -0.001 0.001 -1.07 0.005 0.001 4.50
quartic 0.000 0.000 -1.01 0.000 0.000 1.99

cooperation village-average f 0.614 0.536 1.15 -0.555 0.501 -1.11
instruments squared 1.133 2.190 0.52 0.099 2.048 0.05

cubed -1.675 3.227 -0.52 0.936 3.018 0.31
quartic 0.582 1.560 0.37 -0.686 1.459 -0.47

R2 0.17 0.43

F -stats cooperation 121.4 9.3
budget 1.7 186.2
all 62.1 100.7

Statistics are for the 3000 observations of households from the BIHS 2015 comprised of nuclear households
with 1-4 children plus households with 2 men or 2 women and 1 or 2 children. The sample includes only
households with consistent food data with nonzero food spending in the 24-hour food diary for each type of
household member (men, women and children). We report OLS estimates, with standard errors are clustered
at the village level.
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Table 3: Estimated Efficiency and Resource Shares, Varying Models
(1) Baseline (2) Varying β (3) Less Overid.

function person variable Estimate Std Err Estimate Std Err Estimate Std Err

ln δ all constant 0.121 0.035 0.099 0.043 0.139 0.077

resource men, ηm constant 0.308 0.012 0.298 0.013 0.411 0.033
shares f 0.027 0.005 0.026 0.005 0.035 0.010

women, ηf constant 0.330 0.014 0.335 0.016 0.343 0.029
f -0.005 0.005 -0.003 0.006 -0.01 0.008

children, ηc constant 0.362 0.020 0.367 0.021 0.247 0.041
f -0.022 0.007 -0.023 0.008 -0.026 0.011

Change men 0.228 0.054 0.199 0.062 0.248 0.111
in women 0.111 0.043 0.095 0.051 0.117 0.089
Welfare children 0.061 0.035 0.034 0.043 0.03 0.079

N 3000 3000 3000

J-stat val [df] p 206.4
[192]

0.23 189.2
[176]

0.24 72.2
[82]

0.77

Statistics are for the 3000 observations of households from the BIHS 2015 comprised of nuclear households
with 1-4 children plus households with 2 men or 2 women and 1 or 2 children. The sample includes only
households with consistent food data with nonzero food spending in the 24-hour food diary for each type of
household member (men, women and children). We report 2-step GMM estimates, with standard errors are
clustered at the village level, of the marginal effects of f on efficiency ln δ, resource shares η and
money-metric welfare ∆j . Unconditional moments are defined by instruments multiplied by each of the 3
equations, where instruments are (1, r1h, zh) × (1, r2h). In columns (1) and (2), r1h and r2h are the first
four powers of village-average f and log-wealth, respectively. In column (3), r1h and r2h are the first two
powers of village-average f and log-wealth, respectively. In columns (1) and (3), β is a constant; in column
(3) β is a linear index in z.

Table 4: Estimated Efficiency and Resource Shares, Varying Cooperation Factors
(4) Joint Housing (5) Shareable (6) Non Private

function person variable Estimate Std Err Estimate Std Err Estimate Std Err

ln δ all constant 0.133 0.040 0.141 0.069 0.056 0.080

resource men, ηm constant 0.281 0.013 0.293 0.014 0.280 0.013
shares f 0.031 0.005 0.040 0.008 0.040 0.007

women, ηf constant 0.351 0.017 0.363 0.017 0.361 0.016
f -0.010 0.006 -0.01 0.007 -0.01 0.007

children, ηc constant 0.367 0.021 0.344 0.02 0.358 0.021
f -0.022 0.008 -0.03 0.011 -0.030 0.009

Change men 0.269 0.063 0.309 0.092 0.208 0.100
in women 0.110 0.048 0.12 0.084 0.029 0.090
Welfare children 0.074 0.045 0.051 0.081 -0.032 0.078

N 3000 3000 3000

J-stat val [df] p 202.9
[192]

0.28 179.7
[192]

0.73 190.9
[192]

0.51

We report 2-step GMM estimates, with standard errors are clustered at the village level, of the marginal
effects of f on efficiency ln δ, resource shares η and money-metric welfare ∆j . Unconditional moments are
defined by instruments multiplied by each of the 3 equations, where instruments are (1, r1h, zh) × (1, r2h),
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where r1h and r2h are the first four powers of village-average f and log-wealth, respectively. Compared to
the baseline sample: in column (4), the cooperation factor f equals 1 if consumption decisions concerning
housing are made jointly, 0 otherwise; in column (5), f equals 1 if the husband and wife spend any time
doing the same shareable consumption activity at the same time during the 24 hours time-use diary, 0
otherwise; in column (6) f equals 1 if they spend any time doing the same non-private activity at the same
time, 0 otherwise.

Table 5: Estimated Efficiency and Resource Shares, Varying δ specifications
ln δ equals
(10) 0 (11) a0 + a1 ln n

4 (12) a0 + a′1
(
ln n

4 z
)

function person variable Estimate Std Err Estimate Std Err Estimate Std Err

ln δ all constant 0.100 0.033 0.157 0.050
ln n

4 0.501 0.178 0.627 0.242

resource men, ηm constant 0.310 0.012 0.309 0.012 0.301 0.012
shares f 0.023 0.004 0.025 0.005 0.022 0.005

women, ηf constant 0.326 0.015 0.332 0.015 0.361 0.018
f -0.004 0.005 -0.006 0.004 -0.017 0.005

children, ηc constant 0.364 0.020 0.360 0.020 0.338 0.020
f -0.019 0.007 -0.019 0.006 -0.005 0.005

composition

Change men m1_f1_c2 0.023 0.004 0.195 0.051 0.257 0.069
in women (4 people) -0.004 0.005 0.085 0.040 0.115 0.055
Welfare children -0.019 0.007 0.045 0.033 0.152 0.061
Change men m1_f1_c4 0.023 0.004 0.466 0.109 0.604 0.162
in women (6 people) -0.004 0.005 0.317 0.103 0.419 0.139
Welfare children -0.019 0.007 0.299 0.093 0.487 0.153

N 3000 3000 3000

J-stat val [df] p 205.8
[193]

0.25 206.4
[191]

0.21 185.6
[184]

0.45

Statistics are for the 3000 observations of households from the BIHS 2015 comprised of nuclear households
with 1-4 children plus households with 2 men or 2 women and 1 or 2 children. The sample includes only
households with consistent food data with nonzero food spending in the 24-hour food diary for each type of
household member (men, women and children). We report 2-step GMM estimates, with standard errors are
clustered at the village level, of the marginal effects of f on efficiency ln δ, resource shares η and
money-metric welfare ∆j . The effect on money-metric welfare is reported for nuclear households with 2
and 4 children. Unconditional moments are defined by instruments multiplied by each of the 3 equations,
where instruments are (1, r1h, zh) × (1, r2h) where r1h and r2h are the first four powers of village-average f
and log-wealth, respectively. In column (10), ln δ is set to 0; in column (11) ln δ is a constant plus a
coefficient times ln n

4 ; in column (12), ln δ is a linear index in ln n
4 and z.
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Appendix:

August 2, 2022

1 Formal Assumptions and Proofs

Here we formally derive our model, and prove that it is semiparametrically point identified.

To simplify the derivations and assumptions, we first prove results without unobserved ran-

dom utility parameters (as would apply if, e.g., our data consisted of many observations

of a single household, or of many households with no unobserved variation in tastes). We

then later add unobserved error terms to the model, corresponding to unobserved preference

heterogeneity.

Let f , r, y, p, π, and z be as defined in the main text. Note that the first few Lemmas

below will not impose the restriction that f only equal two values.

ASSUMPTION A1: Conditional on f , r, y, p, π, and z, the household chooses quantities

to consume using the program given by equation (6) in the main text.

Assumption A1 describes the collective household’s conditionally efficient behavior. For

each household member j, Uj is that member’s utility function over consumption goods, uj

is that members additional utility or disutility associated with f , and ωj is that member’s

Pareto weight.

As can be seen by equation (6) in the main text, the way that private assignable goods

qj differ from other goods g is that each qj only appears in the utility function of individual
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j (which makes it assignable to that member) and these goods are unaffected by the matrix

Af in the budget constraints, meaning that they are not shared or consumed jointly (which

makes them private goods).

We next assume some regularity conditions. These assumptions ensure sensible and

convenient restrictions on economic behavior like no money illusion, preferring larger con-

sumption bundles to smaller ones, and the absence of corner solutions in the household’s

maximization problem.

ASSUMPTION A2: Each ωj (f, z, p, π, y) function is differentiable and homogeneous of

degree zero in (p, π, y). Each Uj (qj, gj, z) function is concave, strictly increasing, and twice

continously differentiable in gj and qj. For each f , the matrix Af is nonsingular with all

nonnegative elements and a strictly positive diagonal. The variable y and each element of

p and π are all strictly positive, and the maximizing values of g1, q1, ...gJ , qJ in Assumption

A1 are all strictly positive.

LEMMA 1. Let Assumptions A1 and A2 hold. Then there exist positive resource share

functions ηj (p, π, y, f, z) such that
∑J

j=1 ηj (p, π, y, f, z) = 1, and the household’s demand

function for goods is given by each member j solving the program

max
gj ,qj

Uj (qj, gj, z) (1)

such that p′Afgj + πjqj =
∑J

j=1
ηj (p, π, y, z, f) y and g = Af

∑J

j=1
gj.

To prove Lemma 1, first observe that the values of g1, q1, ...gJ , qJ that maximize equation

(6) in the main text are equivalent to the values that maximize

max
g1,q1,...gJ ,qJ

∑J

j=1
Uj (qj, gj, z)ωj (p, π, y, f) (2)

2



given the same budget constraint. because the terms in equation (6) in the main text that

are not in (2) do not depend on g1, q1, ...gJ , qJ . With that replacement, the proof of Lemma

1 then follows immediately from the results derived in BCL. BCL only considered J = 2,

but the extension of this Lemma to more than two household members, and to carrying

the additional covariates, is straightforward. Note that the resource share functions ηj in

Lemma 1 do not depend on r, because r, including the component v, does not appear in

either equation (2) or in the budget constraint, and so cannot affect the outcome quantities.

Our empirical work will make use of cross section data, where price variation is not

observed. Most of the remaining assumptions we make about resource shares and about the

Uj component of utility are the same, or similar, to those made by DLP, and for the same

reason: to ensure identification of the model without requiring price variation.

ASSUMPTION A3. The resource share functions ηj (p, π, y, f, z) do not depend on y.

DLP give many arguments, both theoretical and empirical, supporting the assumption

that resource shares do not vary with y. Given Assumption A3, we hereafter write the

resource share function as ηj (π, p, f, z).

For the next assumption, recall that an indirect utility function is defined as the function

of prices and the budget that is obtained when one substitutes an individual’s demand

functions into their direct utility function.

ASSUMPTION A4. For each household member j, the direct utility function Uj (gj, qj, z),

when facing prices p and π and having the budget y, has the associated indirect utility

function

Vj (πj, p, y, z) = [ln y − lnSj (πj, p, z)]Mj (πj, p, z) (3)

For some functions Sj and Mj.

Assumption A4 says that household members each have utility functions in the class that

Muellbauer (1974) called PIGLOG (price independent, generalized logarithmic) preferences.
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As noted in the main text, this is a class of functional forms that is widely known to fit

empirical continuous consumer demand data well. Examples of popular models in this class

include the Christensen, Jorgenson, and Lau (1975) Translog demand system and Deaton

and Muellbauer’s (1980) AIDS (Almost Ideal Demand System) model.1

LEMMA 2: Let Assumptions A1, A2, A3, and A4 hold. Then the value of Uj (qj, gj, z)

attained by household member j is given by

Uj = [ln ηj (π,Afp, f, z) + ln y − lnSj (πj, Afp, z)]Mj (πj, Afp, z) (4)

and the household’s demand functions for the private assignable goods qj are

qj = ηj (π,Afp, f, z) y

(
∂ lnSj (πj, Afp, z)

∂πj
− ∂ lnMj (πj, Afp, z)

∂πj
ln

(
ηj (π,Afp, f, z) y

Sj (πj, Afp, z)

))
(5)

To prove Lemma 2, observe that by Lemma 1, household member j maximizes the util-

ity function Uj (qj, gj, z) facing shadow prices A′
fp and πj and having the shadow budget

ηj (π,Afp, f, z) y. Therefore, using the definition of indirect utility, member j’s attained

utility level Uj (qj, gj, z) is given by Vj
(
πj, A

′
fp, ηj (π,Afp, f) y

)
, which by Assumption A4

equals equation (4). Next, a property of regular indirect utility functions is that the cor-

responding demand functions can be obtained by Roy’s identity. Equation (5) is obtained

by applying Roy’s identity to equation (3) for the private assignable goods qj, and then

replacing p and y in the result with A′
fp and ηj (π,Afp, f) y.

We could similarly obtain the demand functions for other goods g, as in BCL, but these

will be more complicated due to the sharing, with Roy’s identity being applied to each

member to obtain each gj demand function, and substituting the results into g = Af

∑J
j=1 gj.

1Most more recent alternatives, like so-called "rank three" demand systems, are used for data from
countries where the distribution of y is large, and more complicated budget responses are needed to capture
behavior at both low and high income levels. Other popular demand models, like the multinomial logit based
models widely used in the industrial organization literature, are designed for use with discrete demand data
and are unsuitable for the type of continuous consumer demand data we analyze here.
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However, our empirical analyses will only make use of the private assignable goods qj with

demands given by equation (5).

ASSUMPTION A5. Let lnMj (πj, Afp, z) = mj (Afp, z)− β (z) lnπj for some functions

mj and β.

There are two restrictions embodied in Assumption A5. One is that the functional form

of lnMj in terms of prices is linear and additive in ln πj, and the other is that the function

β (z) does not vary by j. The functional form restriction of log linearity in log prices is a

common one in consumer demand models, e.g., the function Mj in Deaton and Muellbauer’s

(1980) AIDS (Almost Ideal Demand System) satisfies this restriction. Assumption A5 could

be further relaxed by letting β depend on p (though not on Af ) without affecting later

results.

To identify their model, DLP define and use a property of preferences called similarity

across people (SAP), and provide empirical evidence in support of SAP. The restriction

that β not vary by j suffices to make SAP hold for the private assignable goods (but not

necessarily for other goods).

ASSUMPTION A6. Let lnSj (πj, Afp, z) = ln sj (πj, p, z) − ln δ (Afp, z) for some func-

tions sj and δ. Without loss of generality, let ln δ (A0p, z) = 0.

Assumption A6 assumes separability of the effects of πj and f on the function Sj. DLP

discuss various ways in which the matrix Af can drop out of a function of prices, as required

in the function sj.2 This assumption is not vital, but will be helpful for making the cost of an

inefficient choice of f identifiable. Assuming ln δ (A0p, z) = 0 in Assumption A6 is without
2For example, one way Af drops out is if Af is block diagonal, with one block that does not vary by f ,

and with sj only depending on πj and the prices in that block. Alternatively, linear constraints could be
imposed on the elements of Af , with sj depending only on the corresponding functions of prices, that, by
these constraints, do not vary with Af . Analogous restrictions are often imposed on demand systems. For
example as shown in Lewbel (1991), the Translog demand system as implemented by Jorgenson, and Slesnick
(1987) imposes a linear constraint on its Barten (1964) scales, that results in a restriction like this on its
equivalence scales. Note that BCL refer to the diagonal elements of Af as Barten technology parameters,
due to their equivalence to Barten scales.
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loss of generality, because if it does not hold then one can make it hold if one redefines δ

and sj by subtracting ln δ (A0p, z) from both ln δ (f, p, z) and ln sj (πj, p, z).

It will be convenient to express our demand functions in budget share form. Define

wj = qjπj/y. This budget share is the fraction of the household’s budget y that is spent on

buying person j’s assignable good qj.

LEMMA 3: Given Assumptions A1 to A6, the value of Uj (qj, gj, z) attained by household

member j is given by

[ln ηj (π,Afp, f, z) + ln y − ln sj (πj, p, z) + ln δ (Afp, z)] [mj (Afp, z)− β (z) lnπj] (6)

and the budget share demand functions for each private assignable good are given by

wj = ηj (π,Afp, f, z) [γj (πj, p, z) + β (z) (ln y + ln ηj (π,Afp, f, z) + ln δ (Afp, z))] . (7)

where the function γj is defined by

γj (πj, p, z) =
∂ ln sj (πj, p, z)

∂ lnπj
− β (z) ln sj (πj, p, z)

The proof of Lemma 3 consists of substituting the expressions for Mj and Sj given by

Assumptions A5 and A6 into the equations given by Lemma 2, and converting the quantity

qj into the budget share wj.

ASSUMPTION A7. Market prices p and π are the same for all households.

Our data come from a single time period, which (assuming the law of one price) justifies

assuming p and π are the same across all households. This assumption makes our demand

functions reduce to Engel curves. For simplicity, we abuse notation here and redefine objects
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that were functions of Afp as just functions of f , since with fixed prices the only source of

variation of Afp is just variation in f).

LEMMA 4: Given Assumptions A1 to A7, the value of Uj (qj, gj, z) attained by household

member j is given by

[ln ηj (f, z) + ln y − ln sj (z) + ln δ (f, z)]Mj (f, z) (8)

and the budget share Engel curve functions wj = Wj (f, z, y) for each private assignable

good are given by

Wj (f, z, y) = ηj (f, z) [γj (z) + β (z) (ln y + ln ηj (f, z) + ln δ (f, z))] . (9)

Lemma 4 entails a small abuse of notation, where we have absorbed the values of p and π

into the definitions of all of our functions, noting that any function of Afp remains a function

of f even if p is a constant. Lemma 4 is just rewriting Lemma 3 after dropping the prices.

LEMMA 5: Let Assumptions A1 to A7 hold. Let Wj (f, z, y) be defined by equation (9)

for j = 1, ..., J . Given functions Wj (f, z, y), the functions ηj (f, z), δ (f, z),γj (z), and β (z)

are all point identified.

To prove Lemma 5, observe first by equation (9) that ηj (f, z) β (z) = ∂Wj (f, z, y) /∂ ln y.

Next, since resource shares sum to one, we can identify β (z) and ηj (f, z) by

β (z) =
∑J

j=1

∂Wj (f, z, y)

∂ ln y
and ηj (f, z) =

1

β (z)

∂Wj (f, z, y)

∂ ln y

Next, define ρj (f, z, y) by

ρj (f, z, y) =
Wj (f, z, y)

ηj (f, z)
− β (z) (ln y + ln ηj (f, z))
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The function ρj (f, z, y) is identified because it is defined entirely in terms of identified

functions. By equation (9), ρj (f, z, y) = γj (z)−β (z) ln δ (f, z). It follows from Assumption

A6 that ln δ (0, z) = 0, so γj (z) and δ (f, z) are identified by

γj (z) = ρj (0, z, y) and ln δ (f, z) =
ρj (f, z, y)− ρj (0, z, y)

β (z)

evaluated at any value of y (or, e.g., averaged over y).

Lemma 5 shows that, given the household demand functions, the resource share functions

ηj (f, z) are identified, so our model, like DLP, overcomes the problem in the earlier collective

household literature of (the levels of) resource shares not being identified. Lemma 5 also

shows identification of the preference related functions γj (z) and β (z), and identification of

our new cost of inefficiency function δ (f, z).

LEMMA 6: Let Assumptions A1 to A7 hold. Assume f is determined by maximizing

Ψ (U1 + u1, ..., UJ + uJ) for some function Ψ. Then f = arg max Ψ (R1 (p, y, f, v) , ...RJ (p, y, f, v))

where Rj (f, y, v, z) is given by

Rj (f, y, v, z) = (ln ηj (f, z) + ln y − ln sj (z) + ln δ (f, z))Mj (f, z) + uj (f, v, z)

The proof of Lemma 6 is then that, by equation (8) and the definition of uj, for any f

the level of Uj + uj attained by member j is given by the function Rj (f, y, v, z).

The above analyses apply to a single household. Our data will actually consist of a cross

section of households, each only observed once. To allow for unobserved variation in tastes

across households in a conveniently tractible form, replace the function lnSj (πj, Afp, z)

with lnSj (πj, Afp, z) − ε̃j where ε̃j is a random utility parameter representing unobserved

variation in preferences for goods. This means that ε̃j appears in member j’s utility function

Uj. We assume these taste parameters vary randomly across households, so E (ε̃j | r, z) = 0.
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Similarly, replace uj (f, r, z) with uj (f, r, z)+ ẽjf where ẽjf represents variation in the utility

or disutility associated with the choice of f . The errors ẽjf and ε̃j can be correlated with

each other and across household members.

Substituting these definitions into the above equations, we get

wj = ηj (f, z) [γj (z) + β (z) (ln y + ln ηj (f, z) + ln δ (f, z)) + εj] (10)

where εj = β (z) ε̃j so E (εj | r, z) = 0, and f is now determined by

f = arg max Ψ
(
R̃1f , ...R̃Jf

)
, where R̃jf = Rj (f, y, r, z) + (Mj (f, z) /β (z)) εj + ẽjf (11)

We will want to estimate the Engel curve equations (10) for j = 1, ..., J . Equation (11)

shows that f is an endogenous regressor in these equations, because f depends on both εj

and ẽjf . As discussed in the main text, we do not try to empirically identify or estimate

equation (11), because both the functions Rj and errors ẽ1f depend on uj, and there may

be important determinents of uj (the direct utility or disutility from cooperation) that we

cannot observe. However, we will require at least one instrument for f .

Another source of error in our model is that, in our data, y is a constructed variable

(including imputations from home production), and so may suffer from measurement error.

We will therefore require instruments for y. Our current collective household model is static.

This is justified by a standard two stage budgeting (time separability) assumption, in which

households first decide how much of their income and assets to save versus how much to

spend in each time period, and then allocate their expenditures to the various goods they

purchase. The total they spend in the time period is y, and the household’s allocation

of y to the goods they purchase is given by equation (6) in the main text. These means

that variables associated with household income and wealth will correlate with y and so are

potential instruments for y.

This time separability applies to the utility functions over goods, Uj (qj, gj, z) for each
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member j, but need not apply to the utility or disutility associated with f , that is, uj (f, v, z).

So at least some of these income and wealth variables could be components of v. Let r̃ denote

a vector of potential instruments for y. These are measures related to income or wealth that

are not already included in v.

Assume there exists values v0 and v1 such that uj (f, v0, z) 6= uj (f, v1, z) for some member

j who’s utility appears in Ψ. Then it follows from equation (11) that f varies with v, so v can

serve as an instrument for f . Similarly, assume that ln y correlates with r̃, which can serve

as instruments for ln y (elements of v could also be instruments for y). Based on equation

(10), we then have conditional moments

E

[(
wj

ηj (f, z)
− γj (z)− β (z) (ln y + ln ηj (f, z) + ln δ (f, z))

)
| r̃, v, z

]
= 0 (12)

Later in this Appendix we consider nonparametric identification of the functions in this

expression based on these moments, but for now consider using these moments parametri-

cally. If we parameterize each of the unknown functions using a parameter vector θ, then

equation (12) implies unconditional moments

E

[(
wj

ηj (f, z, θ)
− γj (z, θ)− β (z, θ) (ln y + ln ηj (f, z, θ) + ln δ (f, z, θ))

)
φ (r̃, v, z)

]
= 0

(13)

for any suitably bounded functions φ (r̃, v, z). Our actual estimator will consist of parame-

terizing the unknown functions in this expression, choosing a set of functions φ (r̃, v, z), and

estimating the parameters by GMM (the generalized method of moments) based on these

moments. At the end of this Appendix we discuss choice of the φ functions.

Equation (13) can suffice for parametric identification and estimation, but is it still

possible to nonparametrically identify the functions in this model in the presence of un-

observed heterogeneity? The following Theorem shows that the answer is yes, if we make

some additional assumptions. Theorem 1 shows these additional assumptions are sufficient

for nonparametric identification of these functions, These additional assumptions, which are
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not required for parametric identification, are listed in Assumption A8.

ASSUMPTION A8. Add unobservable heterogeneity terms ε̃j and ẽjf to the model

by replacing the function lnSj (πj, Afp, z) with lnSj (πj, Afp, z) − ε̃j and uj (f, v, z) with

uj (f, v, z)+ ẽjf , for j = 1, .., J . Assume f is determined by maximizing Ψ, where Ψ is linear,

so Ψ
(
R̃1f , ...R̃Jf

)
=
∑J

j=1 c̃jR̃jf for some constants c̃1,...,c̃J . Let ẽ =
∑J

j=1 c̃j (ẽj1 − ẽj0).

Define ỹ (r̃, v, z) by ln ỹ (r̃, v, z) = E (ln y | r̃, v, z). Assume the following: The function

ỹ (r̃, v, z) is differentiable in a scalar r̃ with a nonzero derivative. The error ẽ is independent of

y, r̃, v, z and (εj, ẽ) is independent of r̃ conditional on (v, z). E (εj | r̃, v, z) = 0. The functions

Mj (f, z) do not depend on f . There exist values v1 and v0 of v such that
∑J

j=1 c̃juj (f, v1, z) 6=∑J
j=1 c̃juj (f, v0, z).

THEOREM 1: Let Assumptions A1 to A8 hold. Then the functions ηj (f, z), δ (f, z),γj (z),

and β (z) are identified.

To prove Theorem 1, first observe that, with f binary, it follows from equation (11) that

f = 1 if
∑J

j=1 c̃j [Rj (1, y, r, z) + (Mj (1, z) /β (z)) εj + ẽj1] is greater than∑J
j=1 c̃j [Rj (0, y, r, z) + (Mj (0, z) /β (z)) εj + ẽj0], where the function Rj is given by Lemma

6. Taking the difference in these expressions, and using the assumption thatMj (f, z) doesn’t

depend on f , we get that f = 1 if and only if

J∑
j=1

c̃j[(ln ηj (1, z) + ln δ (1, z))Mj (z) + µj (1, v, z)

− (ln ηj (0, z) + ln δ (0, z))Mj (z)− µj (0, v, z)] + ẽ

is positive. This means that f = f̃ (v, z, ẽ) for some function f̃ . More precisely, f obeys a

threshold crossing model where f is one if a function of v and z given by the above expression

is greater than −ẽ, otherwise f is zero.
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Now, again exploiting that f is binary,

E (wj | r̃, v, z, y) = E [Wj (f, z, y) + β (z) ln δ (f, z) ε̃j | r̃, v, z, y]

= E[Wj (1, z, y) f+β (z) ln δ (1, z) f ε̃j+Wj (0, z, y) (1− f)+β (z) ln δ (0, z) (1− f) ε̃j | r̃, v, z, y]

= Wj (0, z, y) + [Wj (1, z, y)−Wj (0, z, y)]E (f | r̃, v, z, y)

+ β (z) [ln δ (1, z)− ln δ (0, z)]E (f ε̃j | r̃, v, z, y) .

Next, observe that, since Wj (f, z, y) is linear in ln y, E [Wj (0, z, y) | r̃, v, z] = Wj (0, z, ỹ)

and E [Wj (1, z, y) | r̃, v, z] = Wj (1, z, ỹ) where ỹ = ỹ (r̃, v, z). Averaging the above expres-

sion over y, and noting that f = f̃ (v, z, ẽ1), we get

E (wj | r̃, v, z) = Wj (0, z, ỹ) + [Wj (1, z, ỹ)−Wj (0, z, ỹ)]E (f | r̃, v, z)

+ β (z) [ln δ (1, z)− ln δ (0, z)]E (f ε̃j | r̃, v, z) .

and by the conditional independence assumptions regarding ε̃j and ẽ1,

E (wj | r̃, v, z) = Wj (0, z, ỹ) + [Wj (1, z, ỹ)−Wj (0, z, ỹ)]E (f | v, z)

+ β (z) [ln δ (1, z)− ln δ (0, z)]E (fε̃j | v, z) .

Now the functions E (wj | r̃, v, z) and ỹ (r̃, v, z) (the latter defined by ln ỹ (r̃, v, z) =

E (ln y | r̃, v, z)) are both identified from data (and could, e.g., be consistently estimated

by nonparametric regressions. So the derivatives of these expressions with respect to r̃ are

identified. This means that the following expression is identified.

∂E (wj | r̃, v, z)

∂ ln r̃
/
∂ ln ỹ (r̃, v, z)

∂ ln r̃
=
∂Wj (0, z, ỹ)

∂ ln ỹ
+
∂ [Wj (1, z, ỹ)−Wj (0, z, ỹ)]

∂ ln ỹ
E (f | v, z)

(14)
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Taking the difference between the above expression evaluated at v = v1 and at v = v0 then

gives (and so identifies)

∂ [Wj (1, z, ỹ)−Wj (0, z, ỹ)]

∂ ln ỹ
[E (f | v1, z)− E (f | v0, z)]

and, since E (f | v, z) is also identified, this identifies ∂ [Wj (1, z, ỹ)−Wj (0, z, ỹ)] /∂ ln ỹ.

We can then solve equation (14) for ∂Wj (0, z, ỹ) /∂ ln ỹ where all the terms defining this

derivative are identified. Taken together, the last two steps identify ∂Wj (f, z, ỹ) /∂ ln ỹ for

f = 0 and for f = 1.

Given these identified functions and derivatives, we may then duplicate the proof of

Lemma 5, (replacing y with ỹ, to show that the functions β (z), ηj (f, z), γj (z), and δ (f, z)

are identified.

2 Instrument Validity

To more formally define conditions under which village-level average f is a valid instrument,

assume that the household h random utility parameters ẽ1fh and ε̃jh defined in the Appendix

are independent across households. Let fh equal the expected value of fh conditional on being

a household other than h in the village. Then fh is the probability that a randomly chosen

household in the village, other than household h, cooperates. Assume that we include fh in

the function Rj (equals Uj + uj, formally defined in the Appendix). Taking the conditional

mean of Equation (11) across households other than household h in the village then shows

that fh equals a function of the joint distribution of yh′ , rh′ , zh′ , ẽ1fh′ and ε̃1h′ across all

households h′ other than h in the village. It follows that fh is a relevent instrument in that

it affects the choice of f (by being in Rj) and that it is a valid instrument in the quantity

demand equations because fh is independent of household h’s specific value of ε̃jh and hence

of εjh.
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Appendix Table 1: GMM Estimates, Varying Covariates
(1) Include Abuse (2) Include Wealth (3) Include both

function person var Estimate Std Err Estimate Std Err Estimate Std Err
ln δ all const 0.135 0.037 0.159 0.068 0.191 0.069
η men const 0.302 0.012 0.298 0.017 0.323 0.018

f 0.028 0.005 0.035 0.005 0.031 0.006
women const 0.306 0.013 0.25 0.02 0.241 0.02

f 0.003 0.004 0.007 0.004 0.011 0.005
children const 0.392 0.02 0.452 0.023 0.435 0.024

f -0.03 0.006 -0.042 0.007 -0.042 0.007
Change men 0.251 0.056 0.311 0.094 0.326 0.097
in women 0.154 0.046 0.204 0.081 0.266 0.091
Welfare children 0.056 0.037 0.064 0.073 0.094 0.074
N ons 3000 3000 3000
J: value [df] p 194.6

[187]
0.34 180

[187]
0.63 182.4

[182]
0.48
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Appendix Table 2
Number of parameters = 89
Number of moments = 315
Initial weight matrix: Unadjusted Number of obs = 3,000
GMM weight matrix: Cluster (uzcode)
(Std. Err. adjusted for 281 clusters in uzcode)

Robust Robust
Estimate Std. Err. Estimate Std. Err.

eta_m eta_f
one 0.3082 0.0120 one 0.3299 0.0144
avg_age_men -0.0022 0.0035 avg_age_men 0.0125 0.0040
avg_age_women -0.0208 0.0049 avg_age_women -0.0322 0.0054
avg_edu_men 0.0036 0.0015 avg_edu_men 0.0059 0.0014
avg_edu_women 0.0007 0.0019 avg_edu_women -0.0026 0.0018
avg_age_children -0.0341 0.0129 avg_age_children -0.0559 0.0128
frac_girl 0.0559 0.0096 frac_girl -0.0221 0.0093
ln_dowry 0.0030 0.0013 ln_dowry -0.0011 0.0012
m1_f1_c1 0.0435 0.0193 m1_f1_c1 0.0078 0.0182
m1_f1_c3 -0.0506 0.0157 m1_f1_c3 -0.0651 0.0182
m1_f1_c4 -0.0052 0.0170 m1_f1_c4 -0.1040 0.0216
m1_f2_c1 0.0514 0.0159 m1_f2_c1 0.0986 0.0202
m1_f2_c2 -0.0512 0.0144 m1_f2_c2 0.1275 0.0218
m2_f1_c1 0.1232 0.0236 m2_f1_c1 -0.0451 0.0158
m2_f1_c2 0.1452 0.0236 m2_f1_c2 -0.0371 0.0178
m2_f2_c1 0.0826 0.0211 m2_f2_c1 0.1094 0.0206
m2_f2_c2 0.0461 0.0303 m2_f2_c2 0.1539 0.0319
f, cooperation 0.0269 0.0050 f, cooperation -0.0052 0.0047
gamma_m gamma_f
one 0.3012 0.0139 one 0.2382 0.0123
avg_age_men 0.0030 0.0039 avg_age_men -0.0055 0.0034
avg_age_women 0.0165 0.0062 avg_age_women 0.0234 0.0058
avg_edu_men -0.0058 0.0017 avg_edu_men -0.0057 0.0013
avg_edu_women -0.0021 0.0019 avg_edu_women 0.0024 0.0018
avg_age_children -0.0661 0.0121 avg_age_children -0.0630 0.0096
frac_girl -0.0391 0.0092 frac_girl 0.0333 0.0085
ln_dowry -0.0022 0.0016 ln_dowry 0.0031 0.0010
m1_f1_c1 0.0063 0.0189 m1_f1_c1 0.0410 0.0156
m1_f1_c3 0.0220 0.0186 m1_f1_c3 0.0312 0.0183
m1_f1_c4 -0.0416 0.0188 m1_f1_c4 0.0542 0.0314
m1_f2_c1 -0.0730 0.0140 m1_f2_c1 0.0313 0.0162
m1_f2_c2 -0.0154 0.0158 m1_f2_c2 -0.0269 0.0152
m2_f1_c1 0.0007 0.0183 m2_f1_c1 0.0020 0.0131
m2_f1_c2 -0.0322 0.0193 m2_f1_c2 -0.0156 0.0153
m2_f2_c1 -0.0115 0.0184 m2_f2_c1 -0.0199 0.0138
m2_f2_c2 -0.0090 0.0319 m2_f2_c2 -0.0806 0.0158
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GMM estimation, continued
GMM weight matrix: Cluster (uzcode)
(Std. Err. adjusted for 281 clusters in uzcode)

Robust Robust
Estimate Std. Err. Estimate Std. Err.

beta gamma_c
one -0.1679 0.0041 one 0.1675 0.0179
lndelta avg_age_men 0.0149 0.0046
one 0.1214 0.0349 avg_age_women -0.0311 0.0059

avg_edu_men 0.0079 0.0014
avg_edu_women 0.0015 0.0018
avg_age_children 0.1352 0.0140
frac_girl 0.0106 0.0099
ln_dowry 0.0021 0.0013
m1_f1_c1 -0.0440 0.0234
m1_f1_c3 0.0184 0.0225
m1_f1_c4 0.0888 0.0328
m1_f2_c1 -0.0482 0.0210
m1_f2_c2 -0.0225 0.0251
m2_f1_c1 -0.0926 0.0185
m2_f1_c2 0.0338 0.0276
m2_f2_c1 -0.0320 0.0240
m2_f2_c2 0.1128 0.0632
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Table A3: Estimated Efficiency and Resource Shares, Varying Samples
(7) Food Zeroes (8) Restrict Sample (9) Nuclear Families

function person variable Estimate Std Err Estimate Std Err Estimate Std Err

ln δ all constant 0.135 0.039 0.173 0.040 0.078 0.040

resource men, ηm constant 0.280 0.013 0.289 0.012 0.301 0.011
shares f 0.033 0.006 0.039 0.006 0.020 0.005

women, ηf constant 0.347 0.015 0.337 0.013 0.328 0.015
f -0.003 0.005 0.014 0.007 0.007 0.006

children, ηc constant 0.373 0.018 0.374 0.014 0.371 0.017
f -0.030 0.007 -0.053 0.008 -0.028 0.008

Change men 0.278 0.059 0.351 0.059 0.154 0.054
in women 0.135 0.047 0.237 0.061 0.105 0.047
Welfare children 0.054 0.045 0.019 0.042 0.000 0.045

N 3238 2698 1675

J-stat val [df] p 204.6
[192]

0.25 196.3
[190]

0.36 161.9
[163]

0.51

We report 2-step GMM estimates, with standard errors are clustered at the village level, of the marginal
effects of f on efficiency ln δ, resource shares η and money-metric welfare ∆j . Unconditional moments are
defined by instruments multiplied by each of the 3 equations, where instruments are (1, r1h, zh) × (1, r2h),
where r1h and r2h are the first four powers of village-average f and log-wealth, respectively. Compared to
the baseline sample, in column (7) we add 328 households with zero food spending for at least 1 member;
in column (8), we drop 302 observations where either the female respondent is unmarried, reported wealth
is zero, or expenditure is an outlier; in column (9), we drop non-nuclear households.

1 Discussion of Table A3
In Table A3, we consider three alternatives regarding data construction in our baseline model. In the
leftmost column, labeled (7), we retain the previously dropped 238 households that had zero food intake for
any member type (adult males, adult females or children). We dropped these households because they likely
indicate measurement issues. However, if these zeroes result instead from infrequency that is correlated
with regressors (e.g., if significant numbers of households are so poor that some members don’t eat every
day), then excluding these households could lead to bias. In comparison with the baseline estimates, we
see slightly smaller estimates of resource shares for men in the reference household type, and slightly larger
estimates of resource shares for women and children. However, the estimated marginal effect of cooperation
f on resource shares is very similar to the baseline estimates: cooperation increases male resource shares by
about 3 percentage points, has roughly no effect on female resource shares and reduces children’s resource
shares by 3 percentage points. The estimated efficiency gain from cooperation is also very similar to baseline,
with δ = exp(0.135), or about 14 per cent. The resulting money metric utility gains ∆j from efficiency are
28 per cent for men, 14 per cent for women, and 5 per cent for children, compared to the baseline estimates
of 23, 11, and 6 percent.

In the middle panel, we consider some additional sample restrictions that may be sensible. In this model
we exclude: a) households where the female respondent is not married; b) households in the top or bottom
percentile of the distribution of budgets; and c) households that report zero wealth. The restriction a) is
relevant because our cooperation indicator specifically refers to husbands, and respondents in households
where the female respondent is not married may not consider the response “self and husband” to be valid.
The restriction b) is used because outliers in the budget may have excessive influence on the slopes of
estimated Engel curves. The restriction c) is because reported zero wealth may actually be mismeasured
wealth. These restrictions result in the loss of 302 observations (roughly 10 per cent of the sample).

The resulting estimates in column (8) are somewhat different from the baseline. The estimated value of
ln δ is 0.173, which is a bit larger than that in the baseline. The associated efficiency gain δ is about 19
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per cent. Cooperation now increases male and female resource shares by roughly 4 and 1 percentage points,
respectively, and decreases children’s resource shares by roughly 5 percentage points. At a gross level, these
results are qualitatively the same as the baseline (men gain a lot, women a little and children’s money metric
change is insignificant), but the estimated magnitudes are somewhat larger.

The nuclear households in our data have 1 adult man and 1 adult woman and one to four children. We
also have 1325 non-nuclear households, having either more than 1 adult man or more than 1 adult woman.
These non-nuclear households are a mix of polygamous and multi-generational households. Our model and
data might be less appropriate for these non-nuclear households, since our cooperation factor f is only
reported by “the main” adult female in the household, and primarily refers to joint decision making by the
main adult woman and her husband. Column (9) in Table 4 reports result from estimating the model just
with nuclear households, which greatly reduces the sample size.

Again, we see similar patterns as in the baseline case. Cooperation increases efficiency, and induces
a shift in resource shares from children towards adult men, with a statistically insigificant impact on the
resource shares of women. However, the estimated marginal effect of cooperation f on ln δ is much smaller
in these nuclear households than in the baseline model, with an estimated value of 0.078. This means that
cooperation induces an efficiency gain of only (exp 0.078) 8 per cent in nuclear households, compared with
13 per cent for all households.

The main difference between nuclear households and the full sample is that the nuclear subsample has
smaller households on average. This suggests that the efficiency gains δ may depend on household size.
Having more people in a household means goods can be jointly consumed by more household members,
leading to greater efficiency. In our model, this can arise because more people sharing a good means a
smaller element of A for that good, and hence a lower shadow price.
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