Sparse demand systems: corners and complements

Arthur Lewbel

Boston College and IFS

and

Lars Nesheim

CeMMAP, IFS and UCL

November 2019



Abstract

We propose a demand model where consumers simultaneously choose a few different goods
from a large menu of available goods, and choose how much to consume of each good. The
model nests multinomial discrete choice and continuous demand systems as special cases.
Goods can be substitutes or complements. Random coefficients are employed to capture
the wide variation in the composition of consumption baskets. Non-negativity constraints
produce corners that account for different consumers purchasing different numbers of types
of goods. We show semiparametric identification of the model. We apply the model to the
demand for fruit in the United Kingdom. We estimate the model’s parameters using UK
scanner data for 2008 from the Kantar World Panel. Using our parameter estimates, we
estimate a matrix of demand elasticities for 27 categories of fruit and analyze a range of tax
and policy change scenarios.
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1 Introduction

We propose a demand model that has features of both discrete multinomial choice and
traditional continuous demand systems. In the model consumers simultaneously choose a
small number of different goods from a large menu of available goods, and choose how much
to consume of each good. The model has wide applicability in large scale demand estimation
settings in which most consumers choose zero demand for most goods.

Our model nests both standard continuous demand systems (quadratic utility functions
with Gorman (1976, 1980) and Lancaster (1966) consumption technologies) and standard
discrete choice models (multinomial logit or probit with random coefficients) as special cases.
Unlike most discrete choice models, our model allows the chosen goods to be substitutes or
complements, and to be consumed in continuous quantities. Unlike standard continuous
consumer demand systems, our model allows individual consumers to choose zero quantities
of most types of goods, and includes substantial unobserved preference heterogeneity. A key
feature of our model is that we treat the output of the Gorman-Lancaster linear consumption
technology as a vector of unobserved latent indexes, allowing for highly flexible patterns of
substitution or complementarity.

As our motivating example, we consider consumer demand for fresh fruit in the UK. In
a typical store, there are more than two dozen types of fruit that consumers can choose
among. Consumers typically choose from one to five different types of fruit to purchase, and
buy varying quantities of each type. Some types of fruits are substitutes (such as apples
vs bananas) while others are complements (like cantaloupe and honeydew melons in fruit
salad). Some fruits might be substitutes for some households while being complements for
others. The types and quantities of fruits purchased vary greatly across households.

While many different types of fruit are offered for sale, typical households only buy a
small number of types. As a result, most consumers buy zero quantities of most categories of
fruit, and therefore the vector of observed demands at the individual consumer level is sparse.

Note that this is not a model that is sparse in the sense of having many zero coefficients,



like regressions estimated using the Tibshirani (1996) LASSO estimator. Rather, here it is
the data that is sparse, since for each shopping trip, each consumer buys zero quantities of
most of the goods that are available in the store.

The most popular method of dealing with such sparse demand systems, as exemplified
by the Berry, Levinsohn, and Pakes (1995) BLP model, is to discretize purchases and treat
each unit purchased as an independent multinomial choice decision. Unfortunately, in many
empirical applications not only is this method intractable but also the standard assumptions
underlying the methodology are likely to be seriously violated. For example, in our empirical
application consumers buy up to 5 different types of fruits from a set of 27 available types
of fruits. So even ignoring the quantities purchased and only looking at the types of fruit
selected, there are 80,730 possible baskets to consider, which is far too large for traditional
discrete choice methods.

A far more serious limitation of multinomial choice models is that they generally rule out
complements. Complementarities are important in a wide range of empirical applications.
For example, in our application, some fruits are strong complements (e.g., different types of
berries are frequently purchased and consumed jointly, and various fruits are complementary
inputs to dishes like fruit salad). It is possible to allow for complements in a discrete choice
framework by modelling combinations of fruit as additional distinct goods, e.g., treating an
apple, a banana, and the combination of both as three separate possible choices. However,
the number of possible combinations of just a few fruits out of more than two dozen makes
this approach impractical. We could alternatively allow for some complementaries in a
reduced form way by assuming logit shocks that are correlated across purchase decisions,
but the number of such correlations would again become rapidly intractable.

The leading alternative to multinomial choice models of demand for many goods are
traditional continuous demand models such as those described in Deaton and Muellbauer
(1980). These models are designed to handle joint purchases of bundles of goods in continuous

quantities. However, such models assume each consumer buys positive quantities of most or



all goods. Methods exist for dealing with small numbers of zeros in such models (essentially,
system Tobit; see, e.g., Yen and Lin 2006 and references therein). However, in our sparsity
case each consumer buys zero amounts of a large majority of the available goods.

When using traditional demand systems, large numbers of zeros are usually dealt with
by aggregating to form a few broad categories of goods. However, such aggregation leads
to biases of unknown size and direction unless strict aggregation conditions are met. The
separability or price co-movement restrictions required to justify Gorman or Hicksian ag-
gregation (see, e.g., Lewbel (1996) and references therein) often do not hold. Moreover, for
many applications in marketing, industrial organization, public finance, or in health, one is
interested in the determinants of demand for each type of fruit, not just for broad aggregates.
In Section 7.4 we give an example in which the introduction of a tariff on EU sourced fruits
affects each category of fruit differently depending on the fraction sourced in the EU, and
we compute the disparate impacts on each type of fruit.

The basic structure of our model incorporates a Gorman (1976, 1980) and Lancaster
(1966) type linear consumption technology into a continuous demand system with substantial
unobserved preference heterogeneity. The model then allows for many corner solutions in
the demand for unobserved characteristics to account for the sparsity of observed individual
consumer demands, while the heterogeneity allows different consumers to be at different
corner solutions.

Our model has J different kinds of goods, and contains K latent indices that are linear
functions of consumption quantities (in our fruit application, J = 27 and K = 5). As a
result, K is the maximum number of types of goods that any consumer will purchase at
one time (except for knife edge situations of indifference). The number of different types
of goods a particular consumer actually purchases at any one time, which ranges from zero
to K, is determined by the number of nonnegativity constraints that bind (i.e., the number
of corners) in the consumer’s utility maximization problem. When maximizing utility, the

consumer simultaneously determines how many different types of goods to buy, which goods



to buy, and the quantity to purchase of each good.

In one limiting case where K = J, our model reduces to a standard continuous choice
quadratic utility model, where all available goods are purchased in continuous quantities.
At the other extreme, when K = 1 our model reduces to the Dubin and McFadden (1984)
model where consumers choose a single good by standard multinomial choice (e.g., probit),
and also choose to purchase a continuous quantity of that good. An alternative limit case
of our model nests standard multinomial logit or probit models as special cases. Our model
therefore nests standard multinomial choice (with or without random coefficients), standard
continuous demand systems, and classic mixed continuous and discrete demand models all
as special cases. As a result, our model has wide application across a range of demand
estimation settings.

The next section is a literature review. Section 3 lays out our model, and Section 4
shows how our model nests standard continuous, discrete, and mixed models as special
cases. Section 5 gives our semiparametric identification results, and describes our estimator.
Sections 6 and 7 describe our fruit demand application and our empirical results. Section
8 concludes. A separate Supplementary Appendix provides additional technical material,

summary statistics and estimation details.

2 Literature

As summarized by, e.g., Blundell and Meghir (1987), the continuous demand literature
considers three main theoretical rationales to explain zero expenditure on some goods. One
rationale is lexicographic preferences. With lexicographic preferences, an individual might
prefer to consume any amount of other goods, no matter how small, to a given good. A
second rationale is infrequency of purchase due to durability or storage. A good that is
durable or storable may be consumed regularly, but infrequently purchased. In our fruit

demand example, infrequency of purchase can be largely ruled out over time spans longer



than a few days, because fresh fruit is not durable and cannot be stored for very long. A third
rationale is corner solutions. These occur when the price of a good is above its reservation
price so that nonnegativity constraints are binding. In such cases, given prices and total
expenditures, a consumer chooses to purchase zero units of the good in question.

Lexicographic preferences are typically modelled analogously to Heckman (1979) type
sample selection models. A binary choice equation models the decision of whether to con-
sume the good or not, and then ordinary demand systems are estimated either including or
excluding the good in question. Systems of equations like these can be estimated parametri-
cally using Shonkwiler and Yen (1999) or Yen and Lin (2006). A recent example (still with
a small number of goods) is the semiparametric estimator of Sam and Zheng (2010). Models
like these require utility functions that are fundamentally different for non-consumers and
consumers of a good. These types of models are generally most appropriate for goods that
a significant fraction of the population would never consume, like tobacco or alcohol.

In our model we focus on corners, since it is likely that very few types of fruit are
goods that households would never purchase. In addition, our model allows for substantial
preference heterogeneity, and so accommodates the types of behaviour that lexicographic
preferences seek to capture by allowing some consumers to have arbitrarily small marginal
utility for some goods. Our model allows for the possibility that purchases of some goods
may be extremely rare for a significant fraction of households.

Extreme versions of models based on corners are brand choice models where the constraint
that consumers buy exactly one brand is imposed either a priori or by the structure of the
utility function. For example, Hendel (1999) proposes a model in which firms choose a single
brand (of computer) along with a number of units (firms that are observed to buy multiple
brands are divided into separate tasks, and each task is treated as if it was an individual
firm choosing one brand). Similarly Dube (2004) proposes a model where the purchase for
each “consumption occasion” is the decision to purchase a single brand, but in a continuous

quantity. Other models that entail choosing a single good among many and consuming that



good in continuous quantities include Dubin and McFadden (1984) and Haneman (1984),
and more recently Crawford and Yurukoglu (2012).

A drawback of all these discrete choice based models is that they rule out the possibility
of many different goods being complements. None would, e.g., allow for the possibility of
making a fruit salad. In contrast, our model is based directly on continuous joint demand
for multiple goods, and so allows for goods to be complements, and more generally places
no separability restrictions on the demands for different goods.

Corners in continuous demand models are generally modelled as censored regressions,
such as Tobit models. The early continuous demand system literature that considered corners
formally focused on cases where either a single good, or a very small number of goods,
may have zeros. Examples include Wales and Woodland (1983) and Lee and Pitt (1986).
Applications of continuous demand systems with many goods and censoring generally work
as follows. Let p and y be a price vector and total expenditures, respectively. Utility
maximization without nonnegativity constraints are first used to derive models of the form
q = fj (p,y)+e; for each good J, where q; 1s a latent quantity and e; is an error term. Each
observed quantity ¢; is then assumed to be given by ¢; = max{0,¢;}. Examples of such
models include Golan, Perloff, and Shen (2001) and Meyerhoefer, Ranney, and Sahn (2005).

These censored demand models have one of two flaws. Either errors e; are arbitrarily
appended to demand functions yielding empirical specifications of the form f;(p,y) + e;, or
errors are incorporated as random utility parameters but ignored in estimation. That is,
demand equations of the form ¢} = f7(p,y,e) + e; are approximated by f5(P,Y) +e;. The
most common example of this latter method is based on Deaton and Muellbauer’s (1980)
Almost Ideal Demand System (AIDS), where the vector e appears in the demand functions
fi(P,Y,e) only inside a general price index as in Heien and Wessells (1990).

Most of these censored continuous demand models are not fully consistent with utility
maximization because the nonnegativity constraints are not explicitly incorporated into the

consumer’s utility maximization. In these models, the consumer first chooses possibly nega-



tive quantities for some goods to maximize utility, and then actually purchases zero quantities
for these goods. These problems apply to almost all demand systems with many goods that
allow for censoring based either on e or those based on separate selection equations. An
exception is the brand choice models that forbid complementarities discussed earlier, which
solve this problem by imposing extreme forms of separability. Difficulties in preserving regu-
larity in demand models with non-negativity constraints are further discussed in Van Soest,
Kapteyn, and Kooreman (1993), and Millimet and Tchernis (2008).

Continuous demand models do exist where random utility parameters e are not removed
by approximation (see, e.g., Lewbel and Pendakur 2009, 2017), but censored versions of
these models have mostly not been developed. An exception is Amano (2018), who essentially
applies Lee and Pitt’s (1986) theory to Lewbel and Pendakur (2009) EASI model, employing
a simulated method of moments estimator to overcome analytical difficulties. However, this
approach becomes impractical when the number of goods is large. Amano (2018) must
therefore still maintain strong two stage budgeting assumptions, and model at the level of
aggregate categories of food, to avoid having too many categories of food containing zeros.

Two other papers that have looked at complementarities across goods are Beckert, Grif-
fith, and Nesheim (2009) and Thomassen, Smith, Schiraldi, and Seiler (2017). The former
paper develops a discrete choice store choice model in which, at the second stage, consumers
choose a basket of goods, possibly including zero demand for some goods, using a quadratic
utility model. Unlike our model, their’s does not allow for many goods with many corners,
and does not include random coefficients. Their empirical analysis aggregates goods to a
high level and is limited to an application with 4 types of goods.

The latter paper, Thomassen et al. (2017), develops and estimates a store choice model
allowing consumers to purchase from multiple stores and accounting for zeros in demand.
The paper develops and estimates the implications of complementarities and multi-store
shopping behaviour for competition analysis. As in our paper, the consumer utility model

is quadratic.



Our paper adds to the frameworks developed in these previous papers by allowing the
quadratic utility model to be less than full rank, allowing for flexible heterogeneity to affect
both the first and second derivatives of utility, and by analysing demand at a much more
disaggregate level. The additional flexibility in heterogeneity is required to match variation
in baskets across households.

In our model, zeros are handled using both corners and the Gorman (1976, 1980) and
Lancaster (1966) linear consumption technology with taste heterogeneity. Dubois, Griffith,
and Nevo (2014) also exploit a Gorman Lancaster technology, but with observable charac-
teristics and only to account for taste heterogeneity for types of food, and not for dimension
reduction. Theirs is a continuous demand system, and so despite enormous sample sizes
they must still substantially aggregate across goods to avoid zeros (e.g, they treat spending
on all fruits as a single aggregate good). Other papers that allow for many corners with
Gorman-Lancaster observable characteristics are Chan (2006) and Kim, Allenby, and Rossi
(2007), but these models impose strong additivity conditions that rule out complements
along with most other forms of interactions between goods. In addition, the restriction that
characteristics are observable greatly limits the flexibility of these models. Also related (in
terms of its factor structure) is Elrod and Keane (1995), though theirs is a discrete choice
probit model.

The model we propose overcomes all of the problems summarized above. Each consumer
takes all nonnegativity constraints directly into account when maximizing utility. The model
directly incorporates error terms as preference heterogeneity parameters and allows for ar-
bitrary patterns of substitutability or complementarity among the goods. The model allows
consumers to buy continuous quantities of some goods and zero quantities of the rest. The
model is broadly applicable to any situation where consumers choose multiple options from

a large discrete choice set.



3 The model

Let g; be the quantity of good j purchased by a consumer or a household, and let ¢ € ]Ri
be the bundle of goods purchased by this consumer. Later we add a subscript h to index
households, but for now, omit that to simplify notation. Suppose that consumer utility from
q is a function of K latent attributes. Let by; be the quantity of attribute £ that a consumer
derives from buying a unit of good j and let B be the K x J matrix of elements b;. Then
the K vector of attributes a consumer derives utility from is the vector Bq. Assume K < J,
rank(B) = K and BTB > 0. This is essentially the Gorman-Lancaster linear household
technologies model.

We assume consumers have a strictly quasiconcave utility function over the K dimensional
latent attributes Bq. The particular functional form we use for this utility function is
quadratic. The quadratic utility assumption is not necessary for the analysis but offers
numerical simplicity when applied to large scale datasets.

For now, we assume all consumers have the same matrix B. Later, we introduce ob-
servable (demographics) and unobservable (random coefficient) heterogeneity into B. This
heterogeneity will be important empirically to capture the fact that consumers facing the
same prices choose different baskets of goods.

In a standard continuous demand model, each consumer generally buys nonzero quantities
of all J goods. However, in the Gorman Lancaster model, utility is maximized by consumers
buying exactly K different types of goods. One feature of our model is that we let K be
much smaller than J, which then accounts for most of the zeros in our data. A second
feature is that we introduce preference variation across consumers in the form of random
terms that are added to each element of the vector of latent attributes Bq (later, we also
introduce additional variation in the form of random coefficients). This preference variation
across consumers results in different consumers choosing different baskets of goods. Even
with this taste heterogeneity, the Gorman model would be inadequate for real data, because

it implies that each consumer, with probability one, buys the same number of different types



of goods, K.

An additional feature of our model is that we allow that maximized utility may have
many corners, i.e., points where indifference curves intersect axes in attribute space. As a
result, depending on prices and preference parameters, utility may be maximized by choosing
anywhere from zero to K different types of goods. The more corners (the more binding
constraints), the smaller is the optimal number of different goods to purchase.

Analogous to a Tobit model, in our model the marginal value of each latent index (i.e.,
the marginal utility from each element of Bg) plus unobserved heterogeneity determines
whether a given attribute is desired sufficiently (relative to its cost) to purchase in nonzero
amounts. The unobserved heterogeneity terms are location shifts in the marginal utility for
each attribute. The interaction of these preference heterogeneity terms with binding corners
results not only in different consumers purchasing different baskets of goods, but also in
different consumers facing different corners, and different numbers of corners. The result
is that our model can encompass the variation seen in data, where consumers vary in the
numbers of goods that they buy (from zero to K), vary in the choice of which goods to buy,
and vary in the quantities they purchase of each nonzero good.

Assume that each individual chooses ¢ to maximize the utility function

u(q) — 0.5 (e — Bq)" (e — Bq) such that y > pTq+ go and ¢ > 0

where v is a monotonically increasing function, y € R, is total grocery expenditures, ¢y € R
is a numeraire good, p € R7 is a price vector, and e € R¥, which is randomly distributed
in the population, is a vector of preference parameters, where element e, corresponds to a
satiation level or bliss point for attribute k.

This utility function is quadratic and weakly concave in ¢ which allows us to employ
standard efficient quadratic programming techniques to handle zeros coming from corner

solutions. These methods are computationally fast even for very large quadratic programs.
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Importantly for large scale estimation, it also allows us to efficiently analyse the inverse of
demand and compute the probabilities of observing the data at hand as functions of model
parameters. The theory would largely go through with more general utility functions that
are concave in e — Bq, but would be computationally more burdensome.

This utility function nests both standard continuous demand systems and standard dis-
crete choice models. We discuss this equivalence in more detail in Section 4. We also discuss
incorporating additional observable and unobservable heterogeneity in a way that includes
random coefficients multinomial probit or logit as special cases.

For the rest of the paper we let u (qo) = qo, making preferences quasilinear and thereby
eliminating income effects. This simplification is reasonable for our empirical application,
since fruit and vegetables are generally a small component of households’ overall budgets.
Assuming quasilinear utility, normalizing the marginal utility of income to be one!, and

substituting the budget constraint into the objective, the consumer chooses ¢ to maximize

y—plqg—05(e— Bq)T (e — Bq) such that ¢ > 0. (3.1)

3.1 First order conditions

The Lagrangian for each consumer’s maximization problem is
L(q.0)=y—p"q—0.5(Bg—e¢)" (Bg—e)+d7q
where ¢ is a vector of Lagrange multipliers. The first order conditions are

0 = —p—B"(Bg—e)+9 (3.2)

0 = é60q, 6>0, ¢>0.

IThe utility function in (3.1) can be multiplied by any positive number without changing any predictions
or implications of the model.

11



By assumption, the second order conditions are satisfied since —B” B < 0.

Due to quasilinearity, the value of y does not affect the optimal choice of q. This model
implicitly assumes either that the numeraire can be consumed in negative quantities, or that
y > p'q for any optimizing value of q. Note that this latter condition holds automatically
as long as y is large enough to purchase a bundle ¢ that attains the satiation level Bq = e
(though consumers in that situation may still not choose to buy that bundle, if the utility
value of holding more of the numeraire is greater).

This model has the property that any consumer can maximize utility by buying nonzero
amounts of at most K goods. Given prices and B, the first order conditions define a partition
of R¥ with at most R = (I‘é) elements and where each element of the partition is a polytope.
Let E, be an element of this partition. All consumers with e € E,. choose a quantity ¢, with
the same non-zero components. For each consumer, calculating their optimal quantity bundle
q entails solving a concave quadratic program. Finding an optimum requires identifying the
relevant element of the partition and then computing the optimal quantity. Because the
problem is a concave quadratic program, algorithms exist that obtain a solution in polynomial
time (interior point and related methods). For estimation, computing the likelihood function
requires finding the set F, corresponding to each demand observation ¢ and then computing
the probability that e € FE,.. Because E, is a polytope, we are able to construct efficient

algorithms to compute this probability. Details are in the Supplementary Appendix.

3.2 Piecewise linear demands

To prove identification in Section 5.1, it is useful to characterize solutions that have the
maximum number K of nonzero elements. To do so, let § = (q;,q,) be a vector for which
g, > 0 and g, = 0 such that dim (g,) = K. Without loss of generality, the elements of g, can

be taken to be the first K elements of g. Let p; and py be the corresponding price subvectors
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and B; and By the corresponding submatrices of B so that

e

That is, By is the K x K matrix formed from the first K columns of B and B, is the
K x J — K matrix formed from the remaining J — K columns.

Then q is optimal for all e satisfying

—p— Bl (Big, —e) = 0 (3.3)
—py— By (Big; —¢) < 0 (3.4)
@ >0 (3.5)

Equation (3.3) defines the inverse demand curve —p; = B (B;q, — e) for a single consumer.
The inequalities (3.4) and (3.5) define conditions under which choosing g; > 0 and g, = 0 is
optimal. When B; is nonsingular the system can be simplified and solved to provide explicit

conditions describing the piecewise linear demand function

7@ = (BTB) " (Ble—p) (3.6)
p2— B3 (B1T>_1p1 > 0 (3.7)
g, > 0. (3.8)

In words, the nonnegative G, is optimal if it satisfies the demand equation (3.6) and if the
projection of its price vector is cheaper than the price vector po. When (3.4) is not binding,

small changes in ps have no impact on demand for ;.
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4 Special Cases

In this section we show that our model nests standard continuous choice, discrete-continuous
choice and discrete choice demand models as special cases. In particular, different types of
continuous and multinomial choice demand systems result from setting K = J, K = 1, or

by imposing limiting constraints on B.

4.1 Continuous consumer demand

Suppose K = J. Then the model simplifies to an ordinary continuous quasilinear quadratic
utility function, which (by the first order conditions derived earlier) yields the demand

equations

g=(B™B)" (BTe—p+4),0=20"¢, 6>0,¢>0.

where § are Lagrange multipliers. When all elements of BTe — p are nonnegative then the
nonnegativity constraints do not bind and so with K = J, the system of linear continuous

demand equations given by (3.6) becomes
q= (BTB)_1 (BTe—p).

For empirical application, one could then let B or e depend on product characteristics z,
consumer characteristics z, or unobserved heterogeneity 7 as detailed in Section 5.2 below.
For example, one could assume ej;, = (8, + B1xp) 2; + €5 to obtain a linear demand system

over continuously demanded goods.

4.2 Discrete-continuous choice

Before considering standard discrete choice, it is useful to examine how our model relates
to Dubin and McFadden (1984). They propose a model in which each consumer chooses a

single type of good according to a multinomial probit model and then purchases a continuous
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quantity of the chosen good. Suppose that K = 1 in our model. Then B equals the row
vector of nonnegative elements by;, e equals the scalar e;, and the consumer’s problem of

equation (3.1) reduces to

max {y — p"q — 0.5 (Bq — 61)2} (4.1)

Since K = 1, utility is maximized by purchasing at most one type of good. The con-

sumer’s utility from buying ¢; units of good j is
2
y —pig; — 0.5 (byyq; —e1)”,

which is maximized either at an interior point of the feasible range of values of ¢; given
by the first order condition —p; — (byjq; —e1)b1; = 0 or at one of the endpoints of the
feasible range, i.e., either ¢; = 0 or ¢; = y/p,;. At an interior solution, the optimal quantity
is ¢; = (ex —p;/bi;) /b1; (which is only feasible if e; > p;/by;) which yields utility y +
0.5 ((pj/b1;) — e1)> —0.5¢2. Otherwise, at the corner solution, if ¢ = 0 is optimal, then utility
is y — 0.5¢7.

It follows that if e; < mingeqi,. 3 {pe/b1c} for all goods j, then utility is maximized by
q = 0. Otherwise, utility is maximized by buying the quantity g; = (ex — p;/b1;) /b1; of the
good j = argmingeq, . s3{pe/b1c}, and not buying any other good. Let j = 0 denote not
buying any of the goods. Let py = 1 and Inb;g = —Ine;. It then follows that equation (4.1)
implies making a discrete choice to purchase good j = arg mane{0717_,,,J}{ln bie — Inp,} and
a continuous choice of ¢; as detailed above.

As discussed in Section 5.2 below, in empirical applications the elements of B may de-
pend on consumer and product characteristics. For example, one could assume Inb;j, =
(Bo + B1xn) zj + €5, where z; and x), are vectors of observed product and consumer charac-

teristics. Letting €¢;, = In ey, our model reduces to a multinomial choice model in which a
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consumer chooses to purchase only the good j that satisfies

= —1 Epp b
J=arg, max J}{ﬁm np;+em}

(which is multinomial probit if  is normal) and the quantity ¢; given by ¢;r, = (€1, — p;/b1jn) /b1jn-

4.3 Multinomial discrete choice

The previous section shows one way our model encompasses discrete-continuous choice. Ad-
ditionally, a limiting case of our model nests ordinary multinomial choice or pure discrete
choice. Suppose we take B to be a diagonal, invertible J x J matrix. Consider the model

where ¢ > 0 is determined by maximizing the utility function
(y - qu) By — 0.5¢" BT Bq+u'q (4.2)

for some positive scalar 3, (which equals the marginal utility of money) and vector of fixed or
random parameters u. When B is invertible, this model is equivalent to our model, because
for any choice of B and u, one can define e = B~'u, which then makes equation (4.2) equal
to equation (3.1) up to an affine transformation (multiplication by 3, and addition of e’e)
that has no effect on consumer choices. Essentially, our original utility model can be derived
from equation (4.2) by completing the square.

Now consider the limiting case of (4.2) in which B — 0 and Be — u where u; = z; +¢;.

In the limit case, maximizing (4.2) is equivalent to maximizing

ijl (B2 — Bopi + €5) 45-

With the addition of the constraint that ) ;<1 this is the standard multinomial choice
model. The parameters (3, 5,), may depend on both observable demographics z; and ran-

dom coefficients 7,. In particular, if one assumes that ¢; are distributed as independent
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Type I extreme value random variables, then this is the standard multinomial logit model.

5 Identification and estimation

In Section 5.1 we maintain the assumption that all consumers have the same B and discuss
conditions sufficient to ensure that B is point identified. We also consider nonparametric
identification of the distribution of the vector e. We show that this distribution is point
identified for all e in the set {e : BTe > O}. For values not in this set, the distribution
is not identified because consumers with values of e outside this set, choose ¢ = 0 with
probability one. To see this, consider a consumer with e satisfying BTe < 0. For this
consumer, it follows immediately from the first order conditions (3.2) that ¢ = 0 for all
nonnegative prices. Therefore, if prices are nonnegative, nothing can be identified regarding
the distribution of e for all e € {e | BTe < 0}, other than the probability of lying in this set.

In Sections 5.2 and 5.3 we discuss heterogeneity in B before discussing estimation in

Section 5.4.

5.1 Identification

ASSUMPTION A1l: With probability one, consumers buy the minimum number of different
goods necessary to maximize utility given by equation (3.1). Assume that p is continuously
distributed on the positive orthant with a density that s strictly positive almost everywhere

on the positive orthant. Assume that the distribution of q given p is known.

The assumption that consumers buy the minimum number of goods is a tie breaker for
knife edge situations where utility can be maximized in more than one way. Given the
assumed continuity of prices, these knife edges occur with probability zero. The distribution
of ¢ in a population facing prices p is in principle observable, so Assumption A1l essentially
says that, for proving identification, this distribution is assumed to be known for any value

of p.
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ASSUMPTION A2: The K x J matrizx B has rank K > 0. For every column B; of
B, there exists a (K x K —1) matriz B_; consisting of K — 1 columns of B such that

B; = [ B; B_; } 18 nonsingular. Without loss of generality, B is assumed to be upper

triangular.

Assumption A2 ensures that for every good j, there exists a set of K goods including
good 7 such that some consumers choose to buy a bundle consisting of those K goods.
Identification of the j'th column of B is assured using expressions like (3.6) and (3.7) with
nonsingularity of Ej in Assumption A2 taking the place of nonsingularity of Bj.

For any K x K matrix A such that ATA = I, our utility function is observationally
equivalent to a utility function that replaces B and e with AB and Ae. Specifically, B can
only be identified up to a set of scale and rotation normalizations. That is, the scale (or
magnitude) of each column of B is identified as is an upper triangular matrix defining, within
each column, the relative magnitudes of the elements of B. These normalizations can be

imposed by assuming B is upper triangular.

ASSUMPTION A3: Let f, denote the density function of e. The density f. is strictly

positive on the set E = {e | Bfe > 0}. e is distributed independently of p.

The price exogeneity Assumption A3 is a strong restriction. We discuss this along with

price measurement issues later in a ”Price issues” subsection.

THEOREM 1: Given Assumptions Al, A2, and A3, the density f. (¢) is nonparametri-

cally identified for all e € I/ and the matrix B is identified.

Proof of Theorem 1: Let B be the set of unique combinations of K different goods chosen
from the J available goods, and let R = (IJ() be the total number of elements of B. Let
r € {1,...R} index each possible element of B. Let i" = {7, ..., i}, }be an element of B and let
¢ be a vector of quantities satisfying ¢, (i) = 0if i ¢ :". We call ¢, a K dimensional basket or

bundle corresponding to the list i". So for a given basket ¢,, ¢ indexes the nonzero elements
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of g,. Let p,. be the K vector of prices of the goods ¢,, and let p_, be the J — K vector of
prices of all the other goods. Let B" = B (:,i") be the submatrix of B corresponding to these
nonzero elements. Let R C B denote the smallest set of bundles such that B is nonsingular
for all 7 € R and Bj is a column in B" for some r. The set R has at least J /K elements and
no more than J — K + 1 elements. By Assumption A2, for every good j the column B; lies
in some nonsingular B".

With these definitions, we first show that for every r € ﬁ, thereisaset A C PxY and a
set Q" = {qr € R7 with ¢, (i) = 0if i ¢ ir} such that Pr(Q"|A) > 0. To show this, consider
qr € Q". Tt is optimal to choose ¢. when inequalities (3.7) and (3.6) are satisfied for § = g,.
That is when p_, — BT, (B,,T)_1 pr > 0 and ¢, = (B;:FBT)_1 (Bfe —p,) > 0. Assumptions
A2 and A3 ensure that this event has positive probability.

Given this result, we can now establish identification of B. For each good j, there is a
subset B, of K goods as described above that includes good j. For this set of goods let p, be
sufficiently low, and let p_, be sufficiently high, to yield a positive probability of observing
bundles ¢" in which ¢" (¢) > 0 for all ¢ € B,.. Then ¢" > 0 for all p’ = (p;, P 7«) where p/. < p,
and p’, > p_, (¢',y).

Let B, be the K x K submatrix consisting of the columns of B corresponding to the set
B, of these K goods, and let p, and g, denote K vectors of prices and quantities of those
K goods. By the first order conditions, a consumer buying g, has B! B,g, = Ble — p,.
By assumption A2, BT B, is nonsingular. The demand functions for these K goods for the
consumers in this region are therefore g, = (BTT Br)f1 (BTT e— pT). Since the distribution of
e does not depend on p,, the derivative with respect to prices p, of the conditional mean (or
any conditional quantile) of g, conditioning on p (which can be calculated at any point that
is not on the boundary of the region) is (Bf Br)fl, which identifies B B,.

By Assumption A2, each good j appears in some bundle 7 for which the above derivation
can be performed and B! B, can be identified, so all of the columns of B are recoverable up

to normalizations from the collection of estimates of BT B,. At most J — K such bundles r
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would be required (so that each good j appears in at least one such bundle) and as few as
J/ K such bundles might be needed.

We have now shown that for each r, we can identify
A, = BT'B,.
In addition, these matrices share common elements. So, we can pick one bundle r and define
A, = D,C,C'D,

where D, is a positive diagonal matrix and C, is the Cholesky decomposition of a correlation

matrix. We can then define

B, =CI'D,.

This provides the rotation and scale normalizations up to which B is identified. Given
B, = CTI'D,, the remaining columns of B are identified by sequentially dropping the last
column of B, and replacing it with each remaining column of B. The elements of column j
for j ¢ B, satisfy 3, [B; (i)]* = d2 for some d; > 0.

Having now shown identification of B, consider the distribution of e. Given B, for all
possible bundles r, we can observe BTe = BT B,q, + p, for all observable .., p, pairs. Since
g, and p, are nonnegative, we can uncover observations of BXe and hence of e for all e € F,

thereby identifying f. (e) for all e € E. QED.

Theorem 1 shows that f. (e) is identified for e € E. As discussed earlier, for e ¢ E, it is
not possible to learn anything about f. (e) other than the total probability of not lying in
the set E. The people with values of e ¢ E are never willing to pay a positive price to buy
fruit.

For policy questions such as competition policy questions or tax policy questions, these

people are irrelevant. They are outside the market. For policy questions involving exter-
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nalities such as public health, they may be relevant and policy makers may be interested in
learning about the distribution of e for those consumer types. In that case, policy makers
have several options. They could estimate bounds on policy responses, they could introduce
experiments with subsidies to generate negative prices, or they could identify the distribu-
tion by imposing shape or parameter restrictions on f.. Since f. (e) is identified over a large
(positive measure) subset of the support of e, in general it could be fully identified either by
semiparametric shape restrictions such as radial symmetry, or by finitely parameterizing the

density. It then follows by Theorem 1 that the model is completely identified.

5.2 Heterogeneity in B

We now introduce heterogeneity in B and discuss how B shapes product choices and the
degree of substitutability and complementarity between goods. The main reason we intro-
duce heterogeneity in B is empirical - there appears to be more variation in consumption
patterns, holding prices fixed, than can be explained by variation in e (analogous to the use
of random coefficients in addition to logit errors in applications of BLP models).

Let B" be the matrix of preference parameters for household h, let B]h be column j in
B" and let byy; be row k column j in B". As discussed in Section 4.2, when K = 1, the ratio

of p; to |bp1;| determines product choice for household h. Household h purchases the good

pPj
’bh1j|'

with the smallest value of In this case, all goods are perfect substitutes and goods
with low prices and large values of |bs;| are purchased.

When K > 1, the magnitude of each column vector || BY|| = SO | (bnkj)?, plays a simi-
lar role. When ||B;L|| is large relative to p;, the product j is likely to be purchased. However,
now households may buy more than one good and goods may be complements. Now, the
relative magnitudes of the elements within a column of B", determine how important each

good is in producing each latent attribute. They also govern the degree to which goods are

complements or substitutes.
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As discussed above, B" is identified only up to scale and rotation normalizations.? To
impose these normalizations while incorporating heterogeneity in a flexible way, we parame-
terize B" as follows. First, we normalise B" to be upper triangular so that byx; = 0 if k > j.
Then we convert the nonzero elements of each column of B" into hyperspherical coordinates.
That is, for each j, we define (dn;, C) = H (Bl) where dy; = ||B|, |C?|| = 1, and H is
the hyperspherical coordinate transformation detailed in Appendix A in the Supplementary
Appendix. In the hyperspherical coordinate representation dn; € Ry, cpi; € [0, 7] for all
k <min(K,j) — 2, and cpi; € [0,27] for k = min(K, j) — 1. Here, cpy; is the element in row

k of vector C'. Finally, we assume that

Indy; = z] 8, (5.1)
ey = TO! (Z,Z;»’}/h) VE < min(K, j) — 2 (5.2)
Chij = 2P~ (zgjvh) Vk = min(K,j) — 1 (5.3)

where @ is the normal CDF, (z;, z;;) are vectors of product characteristics, and (/3,,7,,) are
vectors of consumer specific parameters. The log transformation ensures that dj; is positive
and the inverse normal transformations ensure that c,x; are constrained to lie in the relevant
intervals.?

We assume

Br; = Bjo+ ﬁjTﬂ?h + 5?27711 (5.4)

Vhki = Vkjo T Vej1Th + Vij2llhy (5.5)

where x, is a vector of observable demographic variables and 7, is a [V, dimensional vector

of unobservable latent factors normalized to be independent with mean zero and variance 1.

2The presence of heterogeneity means that these normalization are applied separately for each household.
If the distribution of random coefficients were nonparametric, these would be free normalizations, however
we do impose a functional form on the distribution, though our model of heterogeneity is flexible.

3The inverse normal transformation could be replaced with the inverse of any strictly increasing cumula-
tive distribution function.
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The J x N,, matrix 3, = [612, s Bjay sy BJQ} is an upper triangular matrix of factor loadings

mapping the low dimensional 7 into the random coefficients 3. Let N = (K — 1) (J — &)
be the number of elements of {C’j};’:2 Then, the Ne x N, matrix vy = V199, -, Vi s—1.2)
is an upper triangular matrix of factor loadings mapping the low dimensional 7 into the
random coefficients ¢,. Note that the matrices of factor loadings are normalized to be upper
triangular and that the parameters describing the mean, variance and correlations of n are
subsumed in the parameters (5, 55, Yo, Va)-

In terms of product substitutability, this specification nests the fully unrestricted case in
which (z;, z;) are vectors of dummy variables defined by product names and more restricted
case where (zj,zy;) are vectors of observable product characteristics. The former case is
unrestricted in the sense that no patterns of substitutability are imposed on B". The latter,
depending on the set of observable characteristics available, imposes that products with
similar values of (z;, z;;) are similar.

In terms of heterogeneity across households, the flexibility of the model depends on the set
of observable variables available and on the dimension and distribution of 7. In our empirical
application we assume that the dimension of 7, is 2 and that it is normally distributed.

The model is highly flexible in that the support of the random coefficients spans the space
of upper triangular matrices B. In addition, we allow random coefficients to affect both the
importance of each product ||B;| and the patterns of substitution and complementarity.
This flexibility is important to capture the wide variety of baskets chosen by households.

Finally, we maintain this flexibility while keeping the dimension of random coefficients low

by using the factor structure in equations (5.4) and (5.5).

5.3 Identification of additional heterogeneity

The proof of Theorem 1 works by establishing nonparametric identification of the distribu-
tion of BTe in the positive orthant. When B is constant, Theorem 1 shows this implies

identification of B and nonparametric identification of the distribution of e for all e where
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BTe > 0. These results remain true if both B and f, are conditioned on z.

In our empirical application, we also introduce random coefficients into B as detailed in
the previous section. To maintain identification, we assume that the distributions of both the
random coefficients and e are finitely parameterized, with distributions that are independent
of p.

The proof of Theorem 1 shows that for various subsets r of K goods, people who pur-
chase positive amounts of those K goods (because the price vector p, of those goods is
sufficiently low and the price vector of all other goods is sufficiently high) do so with de-
mand functions given by g, = (B! BT)_1 (BYe — p,). Conditioning on this price regime,
the conditional distribution of g, given prices nonparametrically identifies the distribution
of (B?BT,)f1 (Bre — p,) given p,.

The parameterized distributions of B and e are then identified as long as their parame-
ters can be recovered from moments of (BT B’,n)_1 and of (BT B,,)_1 BFe. In our empirical
application, we assume e is a multivariate K vector normal and, as detailed in the previous
section, we introduce random coefficients into B using a factor structure. Specifically, we
assume 7, is a N,, dimensional vector of independent normally distributed latent factors. We
then estimate the factor loadings ;, and 7,;,. The identification of the parameters of nor-
mal distributions from low order moments then ensures identification of this parameterized

model.

5.4 Estimation

We assume the data consists of n independent observations of (pps, gnt, ne) for each household
(h,t). Observation (h,t) is an observation of household A in month ¢.* Income y; plays
no role due to the quasilinear utility assumption. However, income can be included as a

household characteristic, as is common in empirical applications of multinomial demand

4We use one observation per household and do not exploit the panel structure of the dataset. While it
is straightforward conceptually to extend the analysis to the panel setting under standard assumptions, the
computational burden increases and so we leave the analysis to future work.
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models. To capture seasonal patterns in demand, we assume that e ~ N (u,, ) with p =

{11,}]_, and that equation (5.4) is replaced with

Brjt = Bjor + 5]T1$h + ﬁgTﬂ)h (5.6)

Bjo varies across months. In short, we allow aggregate demand for each of the K latent
indexes to vary across months and we allow the relative importance of each good, 3,y to
vary across months. We assume that the parameters v do not vary across months. Finally, we
assume that n ~ N (0,7), and that dim (n) = 2. The assumption that  has mean zero and
covariance matrix equal to the identity matrix is a normalization given the parameterization
in equations (5.4) and (5.5).

The parameters of the model are 0 = (u, %, 3,7) where u = {ut}thl is the vector of
all mean values of e, 8 = {{ﬁjOt}thl ,ﬂjl,/ﬁﬂ}jl is the vector of all parameters in (5.1)
and v = {740, Vrj1> Vaj2 ) 18 the vector of all parameters in (5.2). The parameters (y, X)
determine the distribution of e. They primarily determine the number of items chosen and
the quantities purchased. The parameters (,v) determine the distribution of B. They
govern which products are chosen and in which combinations. They also determine the
response to prices. We estimate the model parameters by maximum likelihood.

Full details of the log likelihood function are given in Appendix B in the Supplementary
Appendix. Here, we simply outline the key elements. We compute the likelihood function in
each of three cases. Case 1 is the case where a consumer purchases exactly K goods. In this
case, conditional on the random coefficients, the mapping from data to e is one-to-one. The
likelihood function is simply that of a linear model with random coefficients and computation
merely requires integration with respect to the distribution of random coefficients. Because
we assume a factor structure on the random coefficients, the dimension of integration is kept

low.

Case 2 is the case where a consumer chooses fewer than K items but more than zero.
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In this case, conditional on random coefficients, many values of e are consistent with the
observed choice and so the likelihood function is the integral over the polytope in R¥ defined
by the first order conditions. To compute the integral efficiently, we make a series of change
of variables to convert the integral to an integral over a hypercube and then use the tensor
product of Gauss-Legendre integration rules to compute the integral on the hypercube.
Because the region of integration is a polytope in the original coordinates, the change of
variables is simple and fast to compute. A benefit of the change of variables is that the
boundary of the transformed region of integration does not depend on the parameters so the
numerical approximation preserves the fact that the likelihood function is a smooth function
of the parameters.

Case 3 is the case where a consumer chooses to purchase nothing. This case is similar to

case 2 but with a slightly different set of binding inequalities defining the region of integration.

6 Empirical application

We use data from the Kantar World Panel for the UK for calendar year 2008 on all purchases
of food brought into the home by 26,514 households. Using handheld scanners, households
record purchases of all items bought and record prices from till receipts. We treat each
shopping trip as an observation. The data contain a large set of product attributes (at the
barcode level) as well as household characteristics. We use data on all purchases of fruit
excluding a few infrequently purchased categories. After eliminating these small categories,
we observe purchases of 27 different types of fruit including, for example, apricots, bananas,

apples, and cherries.

6.1 Summary statistics

Table A.1 shows the purchase frequency of each category of fruit. The top three most

frequently purchased categories are bananas (23.79 % of purchases), apples (16.85%) and
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grapes (9.99%). The top 15 categories account for 95% of purchases.

Table A.2 shows the purchase frequency of different sized baskets. The table shows that
48.18% of baskets contained exactly 1 item (that is, any quantity of one type of fruit),
25.63% contained two items and 13.86% contained 3 items. Households purchased baskets
containing 5 or fewer items 97.67% of the time. A simple discrete choice model that assumes
consumers buy at most one type of fruit, would be wrong 51.82% of the time.

Table A.3 shows the most frequently purchased two-item combinations. While each of the
top 5 or 10 two-item combinations has an appreciable market share, in aggregate the top 5
account for only 54.34% of two-item combinations and the top 10 account for only 67.20%. To
account for 95% of two-item combinations one must include 105 distinct combinations, which
are all the combinations listed in Tables C.1-C.3 in the Supplementary Appendix. Most of
these combinations have small market shares individually, but together they account for a
large share of all two-item baskets. Our model can account for this wide variation in choices
of types of fruit, numbers of types chosen, and the quantities of each.

Another way to see the variety of choices and the potential role of complementarities is
to look at the frequency of basket size conditional on fruit choice. Tables C.4-C.5 show, con-
ditional on purchase of a fruit type, how frequently each basket size was purchased. Except
for bananas, cherries, and lemons, all categories are more likely to be purchased in combina-
tions than as stand-alone categories. The relative frequencies of basket size vary across fruit
categories and the larger baskets are usually less frequent. These patterns strongly violate

the usual independence assumptions of typical discrete choice demand models.

6.2 Prices

For every shopping trip, we observe the expenditure and price for all items purchased. How-
ever, for items not purchased the price is not observed. To overcome this problem, we follow

standard practice and impute prices using a hedonic regression. For each fruit category we
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estimate a hedonic price model

Inpy = Bri+ h(t) +cu

where Inp;; is the price of item ¢ in period ¢, x;; is a vector of characteristics of item ¢ in
period ¢t and h () is a 6th order polynomial function of time. Time is measured as the day
within the year. Characteristics included in the regressions are country of origin, branded,
organic, tiering (economy, premium or standard), fascia (one of ten firms in the UK or other),
packaging, online shop, and small store.

Figure D.1 in the Supplementary Appendix shows price data and imputed prices for 3
representative examples of the 27 fruit categories: apricots, bananas and cherries. Price
is observed for each shopping trip where a particular fruit is purchased. For apricots and
cherries, prices rise in the spring and the autumn. These are periods when fresh apricots
and cherries are more costly and more scarce. In contrast, the price of bananas is relatively
flat. The results also show that, at any single point in time there is a great deal of variability
in price. This variation is primarily due to variation across fascia and variation due to

promotions.

6.3 Price issues

Issues regarding prices include imputations, seasonal unavailability, and potential endogene-
ity. For some stores and time periods, no purchases of a particular fruit are observed. As
noted above, we follow standard procedure in the literature by imputing prices for these
periods using a hedonic pricing model.

For some time periods, the number of observed purchases is either zero or extremely low.
Fruits (such as ugli fruit) that have very low demand in all time periods are dropped from
the sample, since demand for these is too low and specialized to be estimated with reasonable

precision. Other fruits have very low or zero sales just in some time periods but not others,

28



due to availability (typically being out of season). For example, cherries are available in the
summer and winter but not in the spring and the autumn. To handle this situation, we trim
observations when sales within a one week window are below a low threshold. That is, if
total sales of a fruit within a week in our sample are below the threshold, we treat the fruit
as unavailable that week and drop from our sample the few households that did manage to
purchase that week. For these cases, we treat the fruit’s price as being arbitrarily high on
those days, to represent lack of availability.

Essentially, this procedure treats low availability as a supply shock. We interpret this
procedure as a form of asymptotic trimming. By lowering the threshold as the sample
size grows, asymptotically we only treat true zeros as unavailable supply, noting that any
infrequency of purchase or high demand price elasticity will eventually lead to some purchases
in every period where the product is really generally available.

The estimation of our model assumes prices are exogenous. Since we estimate the model
using data on daily purchases, likely sources of endogeneity for fruit demand on any particular
day could include promotional activity, weather (if both prices and demand respond to
weather), and unobserved quality variation. Most of the variation in quality of fruit is either
across stores or seasonal. We capture seasonal variation using monthly dummies in the model.
We treat store choice as exogenous (noting that store choice depends heavily on factors
other than fruit demand, such as distance to the store, and on the other products consumers
consider buying on each trip to the market). We are therefore assuming that, conditional on
store, prices are not correlated with demand shocks. Conditional on seasonal dummies, we
expect current weather to shift demand but not price as we expect stores to rarely if ever
change prices in response to changes in high frequency (such as daily) weather shocks. We
include promotional status in our hedonic price models and assume that conditional on price,
unobserved demand shocks are independent of promotional activity. In summary, given the
nature of our data and the controls we include in the model, we expect that biases from

assuming prices are exogenous are likely to be small.
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6.4 Potential estimation issues

Our identification proof assumes that prices are continuously distributed over a relatively
large support, which ensures that, with positive probability, most possible combinations of
K =5 or fewer fruits would be purchased by some subset of consumers. However, in finite
data sets, we may not observe many combinations of less popular fruits being purchased, or
the number of consumers observed buying rare combinations of fruits may be very small.
An analogous problem arises in BLP type models, where some goods may have very small
or zero market shares. In practice, our estimator converges and appears to be numerically
well behaved, as we discuss in the next section. This may be aided in part by our use of a
parametric model for the distribution of random utility parameters, which should allow for

identification even with potentially limited price variation.

7 Empirical results

The total number of parameters in the model is determined by the number of types of fruit
J, the number of indices K (which equals the maximum number of different types of fruit
a single consumer may buy), NV,, the dimension of latent factors, and the number of month
fixed effects for y, and SBy;. For J = 27, K =5, N, = 2, and T = 12, there are 740
parameters. We estimate these parameters by maximum likelihood, using our sample of
26,514 observations. At the optimum we find that the Hessian of the likelihood function
is negative definite (largest eigenvalue is -0.15) and that all parameters are estimated with
a high degree of precision. All are statistically distinct from zero at the 5% level. We
restarted the estimation procedure from multiple starting points, and tested by perturbing
the model in multiple directions in the parameter space. We found no evidence of multiple
local optimizers or of failure to converge to a global optimum.

Individual parameter values are difficult to interpret. So, to illustrate our results, we

discuss model predictions for individual households with different random coefficient values,

30



we summarize aggregate demand curves and elasticities implied by the estimates, and we

provide several different counterfactual simulation exercises.

7.1 Household level demand predictions

To illustrate model predictons for individual consumers, we plot predicted demand for 9
household types. Each type is defined by a realization of the vector ) such that for each type
each element of n takes one of three values. For each element, the three values are selected
from the 25th, 50th or 75th percentile of the respective marginal distributions. Each type
also is set to have values of e equal to the mean.

For each household type, we computed the frequency with which baskets of various sizes
were purchased as prices vary (one at a time) from 50% to 200% of baseline prices (basket size
here refers to the number of different types of fruit, not the quantities of each). Household
types 2, 5, 7 and 8 virtually always buy exactly two types of fruit. There are only a small
number of settings in which they buy 1, 3, 4 or 5 items. At the same time, household types
1 and 4 buy 2 or 3 items most of the time (they buy 1 or 4 items on a small number of
occasions) and household types 3, 6, and 9 usually buy 1 or two items (they buy 2-5 items
on a small number of occasions).

For each household type, we also examined how the basket composition varies with
price. Household types 1-6, always buy bananas and apples but vary in terms of which
fruits are added to their basket when they buy more than two items. Household type 1, 4,
and 5 purchase kiwis and nectarines. Households 2, 3, and 6 buy easy-peelers, kiwis, and
nectarines. Households 7-9 do not buy bananas but do buy apples, kiwis, nectarines, and
easy-peelers.

Finally, Figures B.1 and B.2 plot these households’ demand curves for various fruits, as
functions of the prices of bananas and apples, respectively. Turning first to Figure B.1, the
figures shows demand for bananas, apples and kiwis as function of the price of bananas for

households 1-6. Households 7-9 are not shown because they buy no bananas; as a result the
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banana price does not affect their demand. For households 1-6, the banana demand curves
are downward sloping, with slope varying across households. In addition, household 3 stops
buying bananas when the price rises above 1.13, and for household 4, the banana demand
curve is kinked because the household starts buying kiwis when the banana price rises above
1.35. The effects of the banana price on demand for other fruits vary widely. Some cross-price
effects are negative, some are positive, and some are flat. Figure B.2 shows a similar wide
range of effects of apple prices on fruit demand by household type. Apple demand curves
slope downward. Some individual demand curves are kinked when a household either starts
or stops purchasing a type of fruit. cross-price effects are positive in some cases, negative in
others, and flat when apple demand is zero.

These 9 household types illustrate the types of individual behaviour predicted by the
model. However, they only illustrate a handful of cases. To further analyse the model’s

predictions, we next analyse aggregate demand.

7.2 Aggregate demand predictions

Figures B.3 - B.5 show estimated aggregate demand curves for each fruit. They also show
what fraction of aggregate demand comes from purchases of baskets with 1 to 5 items.
While the demand curves for individual consumers are piecewise linear, the variation across
households in slopes and kink points produces aggregate demand curves that are smooth
and show varying degrees of curvature.

The aggregate banana demand curve is shown in Figure B.3 panel (c). It has a relatively
gentle and constant slope . Most of the demand for bananas comes from shoppers purchasing
3, 4, or 5 items. In contrast, panel (b) shows the avocado demand curve. The avocado
demand curve is mush steeper and has much more curvature. Very few consumers who buy
avocados buy 5 items. Most buy 2-4 items. These curves illustrate that both intensive and

extensive margin effects influence the shapes of the aggregate demand curves.
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7.3 Elasticities

Tables A.4 - A.7 show estimates of average own- and cross-price elasticities. Six of the own-
price elasticities are less than one in magnitude (apples, bananas, easy-peelers, lemons, pears,
and plums). Of these apples, bananas and easy-peelers are in the top 5 fruit categories in
terms of market share, pears and plums are in the top 10 and lemons are 11th. This suggests
that these products might at least sometimes be sold as loss leaders, on sale for a relatively
low price, despite inelastic demand. Twenty of the elasticities are between -1.04 (mangos)
and -10.6 (sharon fruit) and seventeen elasticities are between -1 and -5.

One of the fruit own-price elasticities is very large in magnitude; pomegranates (-41.1).This
is not altogether unexpected. Pomegranates are purchased in only 0.16% of transactions.
While they are not the smallest market share product, it is a feature of sparse demand het-
erogeneous consumers that demand for products with small market shares can have very high
elasticities, because it only requires a small number of consumers to start buying the product
to produce a very large percentage increase in demand. The aggregate demand curve for
pomegranates seen in Figure B.5 panel (g) shows that the demand curve for pomegranates
is very steep when prices are low and flattens as the pomegranates price rises. As a result,
the estimated own-price elasticity drops substantially when the price rises.

Typical discrete choice models assume all goods are substitutes and so do not permit
zero or negative cross-price effects. Likewise, typical continuous demand models do not
have exactly zero cross-price effects. In contrast, in our model estimated cross-price effects
between two types of fruit will be exactly zero (consistent with economic theory) when the
two types of fruit are never purchased in the same basket. Tables A.4 - A.7 show that about
a third of all pairs of fruits have zero cross-price effects at baseline prices.

Among the nonzero cross-price elasticities there are a mix of negative and positive effects.
The negative cross-price elasticities indicate that on average in our sample, the goods are
complements. For example, looking at row 3 in Tables A.4-A.7, when the price of bananas

rises, demand for 13 of the other groups goes down (avocados, berries, cherries, dates, apples,
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easy-peelers, grapes, grapefruit, kiwi, lime, mango, melon, and pineapple). At baseline prices,
these goods in aggregate are complements to bananas. Demand for 10 other goods goes up
(lemons, lychees, nectarines, oranges, passion fruits, paw paws, peaches, pears, plums, and
pomegranates). At baseline prices, these goods in aggregate are substitutes to bananas.
For some of the small market share goods, these cross-price effects are large. For example,
the impact on pomegranates is 5.88. Because most people who buy pomegranates also buy
bananas, the banana price has a big impact on demand for pomegranates. In contrast, the
cross-price effect of pomegranate price on bananas is only 0.000482. It is small because most

people who buy bananas do not buy pomegranates.

7.4 Counterfactual scenarios

Many current large scale shifts in the economy could affect the markets for fruit in the UK.
For example, Brexit is likely to increase tariffs on fruit imports from Europe. Brexit could
also increase the costs of UK fruit by limiting the supply of farm workers and driving up
wages. Another potential change would be a merger between two of the largest supermarket
chains. A proposed merger between Asda and Sainsbury’s, who account for 16.8% and 15.5%
of UK fruit sales respectively, was blocked by the UK competition authority in April 2019.
Such a merger could increase their market power, possibly driving up fruit prices.

At the same time, various tax policy changes could be considered by the British govern-
ment. Currently, due to concerns about tax incidence on poor households, purchased food to
be eaten at home is not subject to the VAT (value added tax). Extending the VAT to food
could significantly increase tax revenue at the cost of adversely affecting poor households.
Alternatively, the government might consider subsidising fruit consumption to promote pub-
lic health (in the past the British government promoted fruit consumption in other ways,
such as the “five a day” advertising campaign).

To analyse effects of these potential changes, we simulated the impacts of five different

policy scenarios:
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1. A 10% increase in the prices of EU sourced fruit due to Brexit.
2. A 10% increase in the prices of UK sourced fruit due to Brexit.
3. A 5% increase in the price of fruit at Asda and Sainsbury’s.

4. A 10% subsidy of fruit prices to promote public health.

5. A 20% VAT tax on fruit to raise revenue.

To simulate the first three scenarios, we used our sample to compute the fraction of each
fruit category sourced from the EU, from the UK and from the rest of the world. We also
computed the fraction of each category sold by Asda and Sainsbury’s. We then used these
shares to compute the price changes implied by each of these events.

For scenario one, the percentage price increase for fruit j is assumed to be 71; = 0.1sgy;
where spy; is the share of fruit sourced from the EU. For scenario two, the percentage
price increase for category j is assumed to be 79; = 0.1syk ; where sy ; is the share of
fruit sourced from the UK. For scenario 3, the percentage price increase is assumed to be
735 = 0.05 (Saspa,; + Ssarn,j) where saspa; and sgarn ; are the shares of fruit sold by Asda
and Sainsbury’s respectively. For scenario four, we assume all fruit prices decrease by 10%.
For scenario 5, we assume all prices increase by 20%.

The price changes resulting from each of these scenarios are detailed in Table A.8. The
first two scenarios affect prices in complex ways because the fraction of fruits sourced from
each country varies significantly across fruit types. For example, the EU tariff scenario
results in more than a 5% price increase for apricots, kiwis, lemons, nectarines, peaches and
pears, because relatively large fractions of those fruits are sourced from the EU. In contrast,
the UK cost shock results in price increases of less than 5% for all fruits except rhubarb
(9.87% increase). A small number of categories (berries, cherries, apples, pears,) have more
moderate price increases of greater than 1%. These are the only categories for which the UK
is a significant supplier. The merger has a more balanced impact on prices because there

isn’t much variation in fruit market shares across grocery firms.
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While the exact price impacts of Brexit and of the proposed merger are unknown (see
for example Levell et al. 2017), the hypothesised price changes we consider here provide an
illustration of what the first order impacts from Brexit or the proposed merger could be.

For each scenario, given the change in prices, we use our model to compute the impact
on a) demand, b) welfare, ¢) revenues of grocery firms, and d) tax revenue. Results are given
in Tables A.9 and A.10.

The second column in Table A.9 shows that the EU tariff has a small percentage impact
on most fruit categories but a big negative impact on apricots, cherries, nectarines, peaches
and pomegranates. For all of these categories, the tariff leads to a drop in demand of more
than 5%. The impacts are quite large, larger than one would predict based on the own-
price elasticities alone. In addition, due to substitution effects, several categories (bananas,
dates, apples, grapefruits, lychees, mangos, melons, oranges, passion fruits, paw paws, and
pineapples) experience a net increase in demand. These fruits are primarily sourced either
from the UK or from outside the EU. As a result, their prices are unaffected by the tariff
and yet their demand increases, in some cases by substantial amounts. Taken together, these
results illustrate that cross-price effects are quite important for understanding the impact of
tariff shocks on demand for fruit.

Scenarios 2 and 3 have much more moderate impacts on prices and also on the resulting
demand for fruit, for all fruits except rhubarb. Rhubarb demand, low to begin with, is re-
duced to zero by the predicted 9.87% price increase. Demand for berries, cherries, pears, and
plums is reduced by -1.12% (pears) to -7.61% (berries) while demand for lemons, nectarines,
pineapples, peaches, pomegranates, and sharon fruits is increased by 1.09% (sharon fruits)
to 15.6% (pineapple). All other responses are less than 1%. In scenario 3, in which prices
increase by 1.08% (dates) to 2.21% (apricots), most products experience changes of demand
of less than 5%. The exceptions are apricots and sharon fruits which experience declines in
demand of 13% and 7.37% respectively.

The final two scenarios, a 10% subsidy of fruit prices and a 20% VAT on fruit, have
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large impacts on demand. The former increases demand by less than 10% for 15 categories,
10-20% for 6 categories and more than 20% for 6 categories. The latter scenario reduces
demand by less than 10% for 10 categories, 10-20% for 7 categories and more than 20% for
10 categories.

Table A.10 reports impacts on total consumer expenditure and on welfare. The top panel
shows the impact on household fruit expenditure per shopping trip. The first 3 scenarios
lead to increases in expenditure ranging from 0.85% to 1.95%. Importantly, the change in
expenditure induced by the price change is not monotonically related to total expenditure.
In 4 of 5 scenarios the 90th percentile of expenditure changes the most and in 3 of 5 scenarios
the 10th percentile changes the least. In scenario 1 the 50th percentile is impacted more than
the 25th, whereas in scenario 2, the 25th is impacted more than the 50th. This illustrates
that accounting for unobserved heterogeneity is important for capturing how price changes
affect households at different points in the expenditure distribution.

The second panel shows the impact on consumer surplus measured in GBP per household
per shopping trip. The EU tariff costs 10th percentile households about 5 pence per shopping
trip and costs the 90th percentile households about 44 pence per shopping trip. The UK
cost shock has very small impacts, less than 10 pence per shopping. The merger has an
intermediate impact. Scenarios 4 and 5 lead to larger price changes and hence larger impacts
on consumer surplus.

The final panel summarizes the aggregate impacts of each scenario. In all cases, the
consumer surplus effects and tax revenue effects offset each other almost exactly. However,
the price increases lead to reductions in firm revenue. The EU tariff reduces firm revenue by
13 pence per household per shopping trip, representing about a 2% decrease in revenues. The
merger actually reduces firm fruit revenues by about 7 pence per trip and reduces consumer
surplus by 11 pence per trip. Since fruit accounts for only a small share of supermarket
revenue, this suggests that the merger would have increased revenue from other goods enough

to compensate for this reduction in revenue.
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8 Conclusions

Discrete choice models of demand focus on the fact that consumers must make individual
selections from a wide variety of items in the market. However, many goods are not purchased
and consumed in isolation, but jointly with other goods. Also, many goods are purchased
and consumed in close to continuous quantities rather than in single units. Unlike most
discrete choice models, our model allows consumers to choose more than one good at a
time, allows the chosen goods to be substitutes or complements, and lets goods be consumed
in continuous quantities. Unlike standard continuous consumer demand systems, our model
allows individual consumers to choose to consume zero quantities of most types of goods, and
includes substantial unobserved preference heterogeneity in the form of random coefficients.
Our model nests both standard continuous demand systems like the quadratic direct utility
function and standard discrete choice models like random coefficients logit or probit as special
cases.

In our empirical application to fruit demand in the UK, we uncover a wide range of
demand patterns, including complementarities, kinks, and corners, that could not have been
revealed with traditional discrete or continuous demand models. These results have impor-
tant implications for welfare calculations, construction of price indices, market structure, and
tax policies. We illustrate some of these implications by estimating the impacts of potential
policies such as tariffs or price changes due to Brexit, a change in the VAT, or a merger

between two large grocery chains.
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A Tables

Table A.1: Most frequently purchased fruit categories

Freq. Pct.  Cum. Pct.

Banana 371,892 23.79 23.79
Apples 263,369 16.85 40.63
Grapes 156,189  9.99 50.63
Berries+Currants 152,731  9.77 60.40
Easy Peelers 135,073  8.64 69.04
Pears 91,062 5.82 74.86
Orange 62,599  4.00 78.86
Plums 50,879  3.25 82.12
Melons 41,845  2.68 84.80
Nectarines 37,954 243 87.22
Lemon 35,593  2.28 89.50
Kiwi Fruit 32,527  2.08 91.58
Pineapples 25,482  1.63 93.21
Avocado 20,810 1.33 94.54
Peaches 16,874  1.08 95.62
Grapefruit 15,248  0.98 96.60
Mango 15,096  0.97 97.56
Cherries 13,792  0.88 98.44
Lime 6,777 043 98.88
Dates 3,869  0.25 99.13
Apricot 3,349  0.21 99.34
Pomegranates 2,474 0.16 99.50
Sharon Fruit 2,059 0.13 99.63
Rhubarb 1,867  0.12 99.75
Passion Fruit 1,592 0.10 99.85
Paw-Paws 1,222 0.08 99.93
Lychees 1,114 0.07 100.00

Note: Using sample of all shopping trips in
2008, each row in the table records the fre-
quency of purchase for a single category of
fruit.
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Table A.2: Number of categories purchased

Freq. Pct. Cum. Pct.
1 377,096  48.18 48.18
2 200,632  25.63 73.81
3 108,527  13.86 87.67
4 53,301  6.81 94.48
5 24,929  3.18 97.67
6 10,889  1.39 99.06
7 4,590 0.59 99.64
8 1,756 0.22 99.87
9 643 0.08 99.95
10 234 0.03 99.98
11 96 0.01 99.99
12 45 0.01 100.00
13 11 0.00 100.00
14 10 0.00 100.00
15 2 0.00 100.00

Total 782,761 100.00

Note: Using the sample of all shopping trips
in 2008, the table records the frequency with
which consumers purchased fruit baskets con-
taining between 1 and 15 categories of fruit.
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Table A.3: Most frequently purchased 2-item combinations

Freq.  Pct. Cum. Pct.

Banana, Apples 101533  25.03 25.03
Banana, Berries+Currants 52141 12.85 37.88
Banana, Easy Peelers 24442 6.03 43.91
Banana, Grapes 23977  5.91 49.82
Apples, Easy Peelers 18363  4.53 54.34
Berries+Currants, Apples 15931  3.93 58.27
Apples, Grapes 12052 297 61.24
Berries+Currants, Grapes 8592  2.12 63.36
Avocado, Banana 7915 1.95 65.31
Banana, Pears 7681 1.89 67.20
Apples, Pears 6299 1.55 68.76
Banana, Orange 5746 1.42 70.17
Berries+Currants, Easy Peelers 5506 1.36 71.53
Apples, Orange 5070 1.25 72.78
Easy Peelers, Grapes 4856 1.20 73.98
Banana, Melons 3551 0.88 74.85
Banana, Nectarines 3244 0.80 75.65
Banana, Lemon 3187 0.79 76.44
Banana, Kiwi Fruit 3144 0.78 77.21
Berries+Currants, Cherries 3018  0.74 77.96
Banana, Plums 2916 0.72 78.68
Avocado, Berries+Currants 2514  0.62 79.30
Banana, Cherries 2511 0.62 79.92
Berries+Currants, Melons 2151  0.53 80.45
Berries+Currants, Nectarines 2133 0.53 80.97
Apples, Kiwi Fruit 2043  0.50 81.48
Apples, Lemon 2009  0.50 81.97
Apples, Melons 1898  0.47 82.44
Banana, Grapefruit 1829  0.45 82.89
Apples, Nectarines 1803  0.44 83.33
Apples, Plums 1790  0.44 83.77
Avocado, Apples 1751 0.43 84.21
Grapes, Pears 1745 0.43 84.64
Easy Peelers, Pears 1734 0.43 85.06
Grapes, Orange 1508  0.37 85.44

Note: The table records the frequency with which var-
ious 2-item combinations were purchased.

44



Table A.4: Elasticities (1)

Price Apricots Avocados Bananas  Berries  Cherries Dates Apples
P Apricots -8.38 -0.0049 0 0 0 0 0

D Avocados -0.191 -2.33 -0.00366  0.000848  -0.0232 0 0.0135
PBananas 0 -0.0253 -0.237 -0.212 -0.0895  -0.0204  -0.0364
PBerries 0 0.00466 -0.168 -1.45 0.594 0.00516  -0.0105
PcCherries 0 -0.00471  -0.00262  0.0219 -4.61  -0.000405 -0.00721
PDates 0 0 -0.00147  0.00047 -0.001 -1.62 -0.0535
D Apples 0 0.0324 -0.0127  -0.00462  -0.0856 -0.257 -0.395
PEasyPeelers 0 -0.012 -0.0749 0.0445 0.686 -0.0317 0.103
PGrapes 0 0.0435 -0.121 0.1 0.0147 0.0625 -0.0135
PGrape fruits 0 1.62e-06  -0.00277  6.76e-05 0 0.036 -0.00205
DPKiwis -3.28e-12  -0.0545 -0.0295 -0.106 0.0873  -0.00123 0.118
PLemons 0 0 0.00411 0.146 0.0293 0.00846  0.00845
PLimes 0 0 -1.51e-05 0 0 0.000663  -1.05e-05
PLychees 0 0 0.00219 0 0 0.0332  0.000468
PMangos 0 0 -0.00195 -0.000596  0.0203 0.152 0.0248
PMelons 0 0.259 -0.614 0.00996 0.229 -0.00969  0.0958
DNectarines 0.722 -0.0614  0.00882  -0.00412 0 -0.000843  0.0672
POranges 0 0.00884 0.0991 0.0739 0.0722 0.148 -0.00488
P Passion fruits 0 0 4.76e-05 0 0 0 0

P Paw—paws 0 0 0.00316 0 0.000358 0.247 0.00391
PPeaches 0 0 0.143 0.17 0.495 0.0678  -0.00136
PPears 0 0 0.000698 -0.000211  -0.0035 0.0703 0.0464
PPineapples 0 0.00672  -0.0159 0.119 0.345 0.000366  -0.00153
P Plums 0 -0.00172  0.0121 -0.0191 0.0779 0.0572  -0.00483
PPomegranates 0 0 0.000482  7.42e-05 0 0.0418 0

P Rhubarb 0 0 0 0 0 2.26e-05 0
PSharon fruits 0 0.00928 0 7.74e-06  0.00387 0 0

Note: Each column records the elasticities of demand of one fruit type with
respect to its own price and the prices of the other fruits. The own-price
elasticities are in boldface font.
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Table A.5: Elasticities (2)

Price Easy Peelers  Grapes  Grapefruits Kiwis Lemons  Limes  Lychees
PApricots 0 0 0 0 0 0 0

P Avocados -0.0022 0.0184 1.67e-05 -0.023 0 0 0
PBananas -0.095 -0.354 -0.197 -0.086 0.0198  -0.0047 0.248
DBerries 0.0448 0.233 0.00381 -0.244 0.561 0 -2.04e-11
PcCherries 0.0255 0.00126 1.33e-11 0.00746  0.00415 0 0
PDates -0.00291 0.0132 0.185 -0.00026  0.00296  0.0149 0.273
D Apples 0.0453 -0.0137 -0.0506 0.12 0.0142 -0.00114  0.0185
PEasyPeelers -0.317 0.101 -0.122 -0.0258 0.0362  0.0241 -2.0le-12
PGrapes 0.0437 -1.74 1.01 -0.000815 -0.0761  0.0329 0.888
PGrapefruits -0.00217 0.0415 -4.06 -0.000214  0.00141 0 0.152
PKiwis -0.0112 -0.000818  -0.00522 -1.07 0.0248 0 0
PLemons 0.0095 -0.0461 0.0207 0.015 -0.893 0 0
PLimes 9.8e-05 0.00031 0 0 0 -2.35 0
PLychees 0 0.0229 0.095 0 0 0 -3.5
PMangos 0.00295 0.00115 0.13 -0.00323  0.00227 0 0.0796
PMelons 0.432 0.112 0.101 -0.0836 -1.67 0 0
DNectarines -0.0124 -0.000783 0.00427 0.548 0.0338 0 0
POranges 0.0103 1.51 1.01 -0.00023  -0.134  -0.0757  0.00427
pPzzssionfruz’ts 0 0 0.0071 0 0 0 0

P Paw—paws 0.000625 -0.0045 0 0.000173 0 0 0

D Peaches -0.0469 -0.00914 0.375 -0.0101 -0.131 0.313 0.025
PPears -0.00315 0.0169 -0.00504 -0.00645  0.0202  0.0221  0.00957
PPincapples -0.017 0.0742 0.13 -0.00695  -0.00474 0 0

P Plums -0.000365 -0.0878 0.549 0.0179 0.139  -0.00332  0.0915
P Pomegranates 0 0 -0.0167 0 0 0 0

P Rhubarb 0 2.21e-05 0 0 0 0 0
PSharon fruits 0.000227 0 0 0.000514 0 0 0

Note: Each column records the elasticities of demand of one fruit type with
respect to its own price and the prices of the other fruits. The own-price
elasticities are in boldface font.
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Table A.6: Elasticities (3)

Price Mangos  Melons  Nectarines Oranges Passion fruits Paw-paws Peaches
D Apricots 0 0 0.0346 0 0 0 0

P Avocados 0 0.079 -0.115 0.00279 0 0 0

P Bananas -0.0492 -0.199 0.114 0.216 0.198 0.201 0.282
PBerries -0.0119 0.0174 -0.0423 0.128 0 0 0.266
DCherries 0.015 0.0141 0 0.00461 0 0.000668 0.0285
PDates 0.277 -0.00148  -0.000789 0.0233 0 1.14 0.00965
D Apples 0.218 0.0703 0.302 -0.0037 0 0.0865  -0.000929
PEasyPeelers 0.0586 0.154 -0.126 0.0176 0 0.0314 -0.0727
PGrapes 0.00987 0.0805 -0.00346 1.12 4.06e-12 -0.0978  -0.00614
PGrape fruits 0.0463 0.003 0.000778 0.031 0.415 0 0.0104
P Kiwis -0.028 -0.0605 2.43 -0.000172 0 0.00378  -0.00684
PLemons 0.0119  -0.00434 0.0907 -0.0607 0 0 -0.0534
PLimes 0 0 0 -0.00053 0 0 0.00198
PLychees 0.0177 0 0 8.21e-05 0 0 0.000433
PMangos -1.04 -0.00171 0.0251 -0.0173 0.216 0.136 0.000339
PMelons -0.0205 -7.23 -0.00801 0.165 0 0.0133 6.09
DNectarines 0.0489  -0.00131 -4.18 -0.00612 -0.0526 0.00313  -0.000685
POranges -0.201 0.16 -0.0363 -2.42 0.0484 1.08 0.281
PPassionfruits ~ 0.00131 0 -0.000164  2.54e-05 -1.39 0 0

P Paw—paws 0.0538 0.00044  0.000636 0.037 0 -4.88 0.0067
D Peaches 0.00435 0.652 -0.0045 0.311 0 0.217 -1.8
PPears 0.0947  -0.00116 0.0969 -0.00844 0 0.327 -0.00429
P Pineapples 0.00116 0.06 0 0.00975 0 0 0.00993
P Plums 0.0293  -0.000583  -0.0392 -0.0456 1.12e-11 0 0.0156
PPomegranates  0.000474 0 0 0 0 0 0
PRhubarb 0 0 0 0 0 0 0
PSharon fruits 0 0 0 0 0 0 0

Note: Each column records the elasticities of demand of one fruit type with
respect to its own price and the prices of the other fruits. The own-price
elasticities are in boldface font.
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Table A.7: Elasticities (4)

Price Pears  Pineapples  Plums  Pomegranates Rhubarb Sharon fruits
PApricots 0 0 0 0 0 0

P Avocados 0 0.0124 -0.00154 0 0 5.6
PBananas 0.0112 -0.204 0.0748 5.88 0 0
DPBerries -0.00269 1.2 -0.0941 0.718 0 0.0256
DCherries -0.00165 0.129 0.0141 0 0 0.473
PDates 0.0817 0.000337 0.0256 36.9 0.26 0

P Apples 0.259 -0.00675 -0.0104 0 0 0
PEasyPeelers -0.0399 -0.171 -0.00178 0 0 0.747
PGrapes 0.0929 0.323 -0.186 -7.92e-11 1.2 0
PGrapefruits ~ -0.00114 0.0232 0.0478 -2.86 0 0
PKiwis -0.0355 -0.034 0.0379 0 0 0.735
PLemons 0.0669 -0.0125 0.179 0 0 0
PLimes 0.00114 0 -6.6e-05 0 0 0
PLychees 0.00135 0 0.00499 0 0 0
PMangos 0.0603 0.000584 0.00719 0.229 0 0
PMelons 5.9 0.36 -0.00158 0 0 0
PNectarines 0.12 0 -0.0188 0 0 0
POranges -0.0621 0.0568 -0.129 0 0 0
PPrassion fruits 0 0 0 0 0 0
pPaw—paws 0.0826 0 0 0 0 0
PPeaches -0.035 0.0642 0.049 0 0 0
PPears -0.881 -0.191 0.127 0 0 0

P Pineapples -0.241 -3.02 0.301 0 0 0

P Plums 0.33 0.621 -0.936 -14 0 0.309
P Pomegranates 0 0 -0.000708 -41.1 0 0

P Rhubarb 0 0 0 0 -2.63 0
PSharon fruits 0 0 0.000458 0 0 -10.6

Note: Each column records the elasticities of demand of one fruit type with
respect to its own price and the prices of the other fruits. The own-price
elasticities are in boldface font.
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Table A.8: Percentage change in price due to tax/price change

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Fruit Baseline  EU tariff UK cost shock  Merger Subsidy VAT
Apricots 2.44 6.52% 3.33e-13% 2.21% -10% 20%
Avocados 4.4 1.93% 2.54e-11% 1.73% -10% 20%
Bananas 1.05 1.69e-11% 1.69e-11% 1.56% -10% 20%
Berries 6 3.54% 4.3% 1.75% -10% 20%
Cherries 7.1 3.47% 1.9% 1.45% -10% 20%
Dates 1.54 0.05% -1.95e-11% 1.08% -10% 20%
Apples 1.41 2.86% 1.54% 1.66% -10% 20%
Easy Peelers 1.78 4.24% -2.15e-11% 1.711% -10% 20%
Grapes 2.34 3.39% 0.08% 1.46% -10% 20%
Grapefruits 0.886 0.87% 1.11e-11% 1.75% -10% 20%
Kiwis 1.34 6.65% 7.97e-12% 1.55% -10% 20%
Lemons 1.91 5.21% -5.44e-12% 1.7% -10% 20%
Limes 0.892 2.27% -1.64e-11% 1.91% -10% 20%
Lychees 5.37 5.17e-12% 5.17e-12% 1.4% -10% 20%
Mangos 1.37 7.73e-12% 7.73e-12% 1.38% -10% 20%
Melons 1.1 1.81% 3.49e-11% 1.51% -10% 20%
Nectarines 2.17 5.96% 3.64e-11% 1.91% -10% 20%
Oranges 1.44 2.88% 1.23e-11% 1.66% -10% 20%
Passion fruits 1.8 -1.99e-11%  -1.99e-11% 1.51% -10% 20%
Paw-paws 3.23 2.12e-11% 2.12e-11% 1.48% -10% 20%
Peaches 2.06 8.97% -1.98e-12% 1.54% -10% 20%
Pears 1.49 5.15% 1.54% 1.59% -10% 20%
Pineapples 0.985  2.01e-11% 2.01e-11% 1.22% -10% 20%
Plums 2.15 3.19% 0.26% 1.61% -10% 20%
Pomegranates ~ 1.77 3.71% -1.32e-11% 1.14% -10% 20%
Rhubarb 4.51 0.11% 9.87% 1.78% -10% 20%
Sharon fruits 9.75 0.5% 2.19e-11% 1.7% -10% 20%

Note: The first column shows the baseline price for each fruit (GBP per kilogram). The
remaining columns show the percentage impact of the change in tax or prices.
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Table A.9: Percentage change in demand due to tax/price change

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Fruit Baseline (kg) EU tariff UK cost shock ~ Merger Subsidy VAT

Apricots 0.00177 -29% 1.87e-11% -13% 116% -72%

Avocados 0.0384 -4.39% 0.0592% -3.69% 26.4% -31.8%
Bananas 1.11 0.657% -0.676% -0.741% 5.08% -9.22%
Berries 0.155 -2.7% -7.61% -2.12% 12% -19.3%
Cherries 0.00482 -7.57% -5.32% -2.92% 28.7% -45%

Dates 0.0548 1.18% -0.232% -0.836% 10.8% -16.4%
Apples 0.288 0.972% -0.933% -0.0613% 0.291% -1.08%
Easy Peelers 0.518 -1.25% 0.468% -0.405% 2.39% -4.6%
Grapes 0.17 -0.428% 0.72% 0.258% 0.973% -3.23%
Grapefruits 0.0186 12.5% 0.707% -2.22% 8.73% -12.3%
Kiwis 0.299 -4.59% -0.737% -1.16% 9.13% -14.9%
Lemons 0.127 -3.77% 4.01% -0.402% 3.67% -7.68%
Limes 0.00421 -2.93% 0.0341% -4.01% 34.7% -37.8%
Lychees 0.00192 4.44% 0.138% -2.17% 20.5% -34%

Mangos 0.0338 1.11% 0.531% -0.645% 5.22% -9.97%
Melons 0.505 6.25% 0.122% -1.12% 7.93% -14.3%
Nectarines 0.0416 -8.88% 3.01% -3.62% 16.5% -26.3%
Oranges 0.372 0.0718% 0.918% -1.22% 5.48% -8.57%
Passion fruits 0.000156 0.187% 3.6e-11% -0.782% 5.63% -9.77%
Paw-paws 0.00569 4.64% 0.66% -2.68% 19.4% -26.1%
Peaches 0.288 -18.3% 1.2% -0.587% 4.35% -8.33%
Pears 0.0489 -3.08% -1.12% -0.338% 2% -3.43%
Pineapples 0.0933 19.9% 15.6% 0.533% 9.31% -14%

Plums 0.0879 -1.96% -1.87% -1.1% 5.53% -10.3%
Pomegranates 5.41e-05 -35.6% 2.73% -3.43% 15.6% -31.2%
Rhubarb 1.63e-06 3.79% -100% -2.65% -100% -23.4%
Sharon fruits 2.87e-05 15.7% 1.09% -7.37% 12.9% -34.7%

Note: The first column shows baseline demand for each fruit (kilograms per household per
shopping trip). The remaining columns show the percentage change in demand resulting
from the change in tax or prices.
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Table A.10: Tax impact on expenditure and welfare

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Baseline EU tariff UK cost shock ~ Merger Subsidy VAT
Consumer expenditure
10th percentile 1.1 0.85% -0.0579% 0.319% -4.04% 5.2%
25th percentile 2.15 0.914% 0.306% 0.555% -3.46% 6.4%
50th percentile 4.41 0.982% 0.0301% 0.509% -3.59% 5.88%
75th percentile 9.39 0.765% -0.17% 0.413% -4.03% 5.73%
90th percentile 16.4 1.95% -0.147% 0.842% -4.75% 8.23%
Change in consumer surplus (GBP)
10th percentile 2.68 -0.0487 -0.0127 -0.0209 0.196 -0.325
25th percentile 7.14 -0.0905 -0.0162 -0.0559 0.343 -0.598
50th percentile 16.3 -0.151 -0.0163 -0.0649 0.598 -1.02
75th percentile 31.7 -0.259 -0.0331 -0.134 0.917 -1.75
90th percentile 53.3 -0.437 -0.076 -0.204 1.46 -2.61
Per capita effects
Consumer surplus (GBP) 23.4 -0.228 -0.0472 -0.112 0.721 -1.32
Tax revenue (GBP) 0.0 0.222 0.0456 0.111 -0.744 1.24
Firm Revenue 6.98 -0.13 -0.0444 -0.0683 0.457 -0.761

Note: The first column shows the baseline values for expenditure, consumer surplus, firm revenue and tax
revenue. All amounts are measured in pounds per household per shopping trip. Columns 2 - 7 show the
percentage change in expenditure, the absolute change in consumer surplus, the absolute change in firm revenue
and the absolute change in tax revenue arising in each scenario. Because of quasilinear utility the change in
consumer surplus equals compensating variation.
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B Figures

Figure B.1:

Demand vs. banana price: by household type
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Figure B.2: Demand vs. apple price: by household type
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are shown.
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Figure B.3:

Aggregate demand curves (1)
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Each panel shows aggregate demand for a fruit category as that fruit’s price varies from 50% to 200% of its
baseline level. The figure also shows what fraction of demand comes from baskets of size 1 through 5.
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Figure B.4: Aggregate demand curves (2)
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Each panel shows aggregate demand for a fruit category as that fruit’s price varies from 50% to 200% of its
baseline level. The figure also shows what fraction of demand comes from baskets of size 1 through 5.
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Figure B.5: Aggregate demand curves (3)
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Each panel shows aggregate demand for a fruit category as that fruit’s price varies from 50% to 200% of its
baseline level. The figure also shows what fraction of demand comes from baskets of size 1 through 5.
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1 Introduction

This Supplementary Appendix presents technical details for the paper “Sparse demand sys-
tems: corners and complements.” Appendix A describes the hyperspherical coordinate rep-
resentation used in the paper. Appendix B derives the log likelihood function and presents
algebraic manipulations that are used to compute the value of the log likelihood. Appendix
C presents additional summary statistics for the data. Appendix D presents details of the

hedonic price functions estimated.

A Hyperspherical representation of B

As discussed in Section 5.2 in the paper, it is convenient to reparameterize the matrix
B in hyperspherical coordinates. This representation is derived as follows. Since B is
upper triangular, by; = 0 if £ > j. The number of nonzero elements in column B; is
k = min{K,j}. Let C; = [clj, e CE_I]T. The hyperspherical coordinate representation of

the nonzero elements of B; is given by (d;, C;) = H (B;) where H~' is defined by

B(l,j) = deOS(Clj> (Al)
B(Q,]) = dj sin (Clj) COS (CQj)

B (3, j) = dj sin (Clj) sin (CQj) COS (C3j)

B(k—1,j) = djsincy---sin (c;_y) cos (¢_y)

B (E,j) = d;sin(cqj)---sin (CE_Q) sin (CE_I)

with d; > 0, ¢ € [0, 7] for k <k —2 and c;_, € [0,27).



B Estimation details

In this section we derive the components of the log likelihood function for 3 cases. Case 1
applies to observations in which a household purchased K goods. Case 2 applies to observa-
tions in which a household bought more than zero and fewer than K goods. Case 3 applies

to observations in which a household bought zero goods.

B.1 Case 1: choice of K goods

The notation is the same as the main paper as defined in Section 3 and in Section 5.2

We drop household subscripts h to ease notation.

Suppose the goods are sorted so that ¢ = (¢1,0). Let p = (p1,p2) be the corresponding
vector of prices. That is, the first K elements are non-negative and the remaining J — K
elements are 0. Let B = [B; Bs| as in Section 3.2.

Inverting the demand function given in equation (3.6) in Section 3.2 in the paper, inverse

demand is

e = (BY) ™ (p+ B Biay)
= (B1T)_1p1+B1CI1

-1
p» > Bj (B1T) D1
Since B is a function of n, n ~ N(0,I) and e ~ N (u, ), the case 1 log-likelihood is

infi 0.0,0) = [ {16 [(B1) " pr+ Buow =] + In (et (B)} o000, D

n

where f; is the case 1 density of ¢ conditional on p and ¢ is the normal density function.

Note that parameter values must satisfy the constraints that ps > B2T (BIT )_1 1.



B.2 Case 2: Choice of fewer than K goods

We first derive the likelihood function for fixed B.
Suppose a household chooses ¢ = (¢1,0) with ¢; > 0 and dim (¢;) = d; < K. In this case,

for each ¢;, there are multiple vectors e that satisfy the first order conditions

—P1— BlT (Bl(h - 6) =0 (B-l)
—py — B} (Bigy —e) < 0 (B.2)
q > 0. (BB)

In fact, the set of e values satisfying the first order conditions is a linear space of dimension

K — d;. In these expressions, B; is a K X d; matrix with d; < K and By is a (K x J — d;)

matrix.
Let
By =USV"
T
S
be the singular value decomposition of B; where U is orthogonal (K x K), S =
0

where S is diagonal (d; x dy) and V is orthogonal (d; x d;). Define € = U”e and partition

€ = (e1,€2) where €7 is (d; x 1) and €3 is (dy X 1). Then rewrite (B.1) as

€1 T
VIS 0 =p1+ B] Biqa
€
or
VSlgl = D1 + B?qul (B4)

For each ¢; there are multiple vectors € that solve (B.4). In fact, there is a linear space



of dimension dy. In other words, for each (qi,¢e3) € R% x R there is a unique ¢€; defined by
€1 = Gop1 + Giq (B.5)
where

Gy = S;vt (B.6)

G, = SV (B{B).

Since Bj has rank d; by assumption, S; is a (d; X d;) invertible diagonal matrix and by
construction V1 = V7,
Since

e=U"e

e~ N <ﬁ, i) where 1 = Ul and > = UTSU. Consider the partially observed random
vector (g, €2) . q1 is observed but €5 is not. The expressions above imply that the density of
(qu €2) is

fQ1€2 (Q17g2) = fg (G0p1 + qul,,é/Q) - det (Gl)

where (Go, G1) are defined in (B.6).
We observe ¢; if inequality (B.2) is satisfied. Since By = USVT and e = Ue, this is
equivalent to

—p2 — B3U (SV7q; —€) <0. (B.7)

Partitioning By = UTB, (K x J — dy) as



where §21 is size (dy x J —d;) and Egg is size (dy x J — dy), inequality (B.7) is

~ ~ SIVTQI €
—p2 — { BL, B } - <0
0 €9
or

—py — BL (S1VTq1 — &) + BLe;, <0

Substituting from equation (B.5) this is equivalent to

BLe, < py — BLGopy + BL (SiVT = Gi) v (B.8)
Rewrite (B.8) as
Myey < M,
where
M, = BL

is a (J — dy x dy) matrix and

My =ps — §2T1G0P1 + §2T1 (SiVT = Gi) ¢

is (J—d1><1)

Then the Case 2 likelihood, conditional on B(n) and p is

f2lq,p, B(n), 0] = /fql'ea (q1,€2) 1 (Myex < My) dey. (B.9)

Note that fg [q,p, B(n), 0] =0if Pr (Mlgg < Mg) =0.
Let dy = K —d;, let im = 52T C5 be the variance of e;. That is 52T is the upper triangular

cholesky decomposition of igg. Define ey = 52T 294115 and note that after a change of variables



the density of € can be written

6—0.52522

fe(€1,22) = fz (€1,v1 (22) , ) >
(2m) 2

where €; ~ N (v1,8) and 2o ~ N (0, I) where

v = /Al:l + ilgéglzg

Q) = ill_iwi;gliQL

Therefore, (B.9) can be written

f2 [QJpa B<n>7 9] - /fqlzz (QIJ 22) 1 <M122 S MQ) dZQ (B]'O)
where
670.5zgz2
Sz (@1,22) = fer)z (Go+ Giqi, vy (22),€h) s
(2m)®
— 6—0.5zgzz
= form (@1, 22) ———
(2m)®
M, = M/CT

M, = M,— Mf,

The matrix Ml has the QR decomposition

M, = RQ

where R is (J — dy x dy) lower triangular and @ is (ds X dg) orthogonal. Then using the



change of variable z, = Q 'z, the integral can be written as

~ 6—0.5zgz2
lan B0 = [ Fuloe S de (B.11)
RQ#<D (2m) 2
~ —0.5z2Tx
= / Jarz (QIaQ_ll’) o dx (B.12)
Ra<D (2m)>

since @ is an orthogonal matrix. (That is Q7'Q = I and det (Q) = 1) The matrix R is lower

triangular. Therefore, row ¢ has at most ¢ nonzero elements.

Start from x4,. Let Jdt be the set of rows of R that have positive elements in column ds

and J, the set with negative elements. Then for all j € Jj; ,

Dj - ZR<]7Z>xz
— 00 Sde S i<d2

R (3, d»)

and for all j € J .,

i<d2

R (j,d>)

< xg, < 00.

L . H
So, the bounds on x4, are x4, € [z}, 2] where

rY = max | —oo, max i<dz
* jedy, R (j, d2)
and
2 = min | oo, min i<ds
- e R (j, d)



We repeat the calculation for j = dy — 1 through 1. Then the integral is

$d2
e—O.BJJJ:
fola v B(n). 0 / / Foues (01, @7'2) . (B.13)
(2m) %
de

Next for all j < dy define u; = ® (z;) . Then making the change of variables, the integral

is equivalent to

AN ON) / /f (41, Q1 (u)) du (B.14)

where

<
S

I

K

—

8
h
~

(uf-ut)1y)

5 , this is equivalent to

Finally, for all j < dy making the change of variable u; =

f2lg,p, B / /H ( ) farzs (@1, Q7 (v)) dv. (B.15)

9=l

This equals 0 if uf" < u for any j.
The conditional density function f; depends on the parameters 6§ and on the random

coefficient 1. Integrating out the random coefficients, the Case 2 likelihood function is

In fa (q,p, 0 /f2 q,p, B(n), 0] ¢(n)dn.



B.3 Case 3: Choice of 0 goods

Suppose a household chooses ¢ = 0. In this case, the first-order conditions are
—p+ B'e <0. (B.16)
In this inequality, B is a K x J matrix. Rewrite the inequality as
BTe < p. (B.17)
Let e = C'z + p. Then this is equivalent to
BY (Cz+p)<p

BTz < p— BTp.
where B = CTB. Let

B=0R

be the QR decomposition of B where R is (K x J) lower triangular. Since @) is orthogonal

QTQ = I and det (Q) = 1.
Then defining z = Qx, the likelihood conditional on B(n) and p can be written

6—0.5ITCC
BlapBoo = [ e (B.13)

RTz<p—BTpu

Start from . Let J;; be the set of rows of C' that have positive elements in column K and
Jy the set with negative elements. Let D = p — BTy, Then for all j € J,

<K

R(j, K)

—00 S Xk <



and for all j € Jp,

<K
< <.Z‘K§OO.

R(j, K) B

So, the bounds on z are zx € [z, zf| where

D; =) R(j,i)x;

r% = max | —oo, max <K
i€y, R(j, K)
and
D, ~ > R(j,i)a,
2% = min | oo, min 1K
jet R(j,K)

We repeat the calculation for j = K — 1 through 1. Then the integral is

JJH Z‘H

p K o—0.50Tx

ﬁmnmmﬂz/m/ . (B.19)
g o )7

Next for all j < K define u; = ® (z;) . Then making the change of variables, the integral

is equivalent to

ufl  ufl
ﬁmnmmmz/m/m (B.20)
'LLL uL
1 K
where
uy = @ (af)
u! = @ (zf)
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(! —uf ) (+es)
2

fsla,p. B / /H ( ) dv. (B.21)

2y J=l1

Finally, for all j < K making the change of variable u; = , this is equivalent to

Integrating out the random coefficients, the Case 3 likelihood is

In f3(q,p,0 /f3 q,p, B(n), 0] ¢(n)dn.

C Data

Tables C.1-C.3 show the most frequently purchased two-item combinations. For complete-
ness, Table C.1 is the same as Table A.3 in the paper.

The tables show the following. While each of the top 5 or 10 two-item combinations has
an appreciable market share, in aggregate the top 5 account for only 54.34% of two-item
combinations and the top 10 account for only 67.20%. To account for 95% of two-item com-
binations one must include 105 distinct combinations, which are all the combinations listed
in Tables C.1-C.3 below. Most of these combinations have small market shares individually,
but together they account for a large share of all two-item baskets. Our model can account
for this wide variation in choices of types of fruit, numbers of types chosen, and the quantities

of each.
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Table C.1: Most frequently purchased 2-item combinations (A)

Freq.  Pct. Cum. Pct.

Banana, Apples 101533  25.03 25.03
Banana, Berries+Currants 52141 12.85 37.88
Banana, Easy Peelers 24442 6.03 43.91
Banana, Grapes 23977  5.91 49.82
Apples, Easy Peelers 18363  4.53 54.34
Berries+Currants, Apples 15931  3.93 58.27
Apples, Grapes 12052 297 61.24
Berries+Currants, Grapes 8592  2.12 63.36
Avocado, Banana 7915 1.95 65.31
Banana, Pears 7681 1.89 67.20
Apples, Pears 6299 1.55 68.76
Banana, Orange 5746 1.42 70.17
Berries+Currants, Easy Peelers 5506 1.36 71.53
Apples, Orange 5070 1.25 72.78
Easy Peelers, Grapes 4856 1.20 73.98
Banana, Melons 3551 0.88 74.85
Banana, Nectarines 3244 0.80 75.65
Banana, Lemon 3187 0.79 76.44
Banana, Kiwi Fruit 3144 0.78 77.21
Berries+Currants, Cherries 3018  0.74 77.96
Banana, Plums 2916 0.72 78.68
Avocado, Berries+Currants 2514  0.62 79.30
Banana, Cherries 2511 0.62 79.92
Berries+Currants, Melons 2151  0.53 80.45
Berries+Currants, Nectarines 2133 0.53 80.97
Apples, Kiwi Fruit 2043  0.50 81.48
Apples, Lemon 2009  0.50 81.97
Apples, Melons 1898  0.47 82.44
Banana, Grapefruit 1829  0.45 82.89
Apples, Nectarines 1803  0.44 83.33
Apples, Plums 1790  0.44 83.77
Avocado, Apples 1751 0.43 84.21
Grapes, Pears 1745 0.43 84.64
Easy Peelers, Pears 1734 0.43 85.06
Grapes, Orange 1508  0.37 85.44

Note: The table records the frequency with which var-
ious 2-item combinations were purchased.
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Table C.2: Most frequently purchased 2-item combinations (B)

Freq. Pct. Cum. Pct.
Berries+Currants, Kiwi Fruit 1485 0.37 85.80
Berries+Currants, Orange 1426 0.35 86.15

Banana, Pineapples 1392 0.34 86.50
Berries+Currants, Plums 1391 0.34 86.84
Berries+Currants, Lemon 1285 0.32 87.16
Berries+Currants, Pears 1275 0.31 87.47
Apricot, Banana 1263 0.31 87.78
Grapes, Kiwi Fruit 1262 0.31 88.09
Grapes, Melons 1237 0.30 88.40
Grapes, Plums 1201 0.30 88.69
Banana, Peaches 1126 0.28 88.97
Banana, Mango 1109 0.27 89.24
Easy Peelers, Plums 1087 0.27 89.51
Banana, Dates 1060 0.26 89.77
Easy Peelers, Orange 1060 0.26 90.04
Apples, Grapefruit 986 0.24 90.28
Grapes, Nectarines 980 0.24 90.52
Easy Peelers, Melons 963 0.24 90.76
Easy Peelers, Lemon 949 0.23 90.99
Berries+Currants, Pineapples 899  0.22 91.21
Grapes, Lemon 871 0.21 91.43
Berries+Currants, Peaches 870 0.21 91.64
Easy Peelers, Kiwi Fruit 861 0.21 91.85
Berries+Currants, Mango 842  0.21 92.06
Apples, Pineapples 818  0.20 92.26
Apples, Plums 1790 0.44 83.77
Avocado, Apples 1751 0.43 84.21
Grapes, Pears 1745 0.43 84.64
Easy Peelers, Pears 1734 0.43 85.06
Grapes, Orange 1508 0.37 85.44
Berries+Currants, Kiwi Fruit 1485 0.37 85.80
Berries+Currants, Orange 1426 0.35 86.15
Banana, Pineapples 1392 0.34 86.50
Berries+Currants, Plums 1391 0.34 86.84
Berries+Currants, Lemon 1285  0.32 87.16

Note: The table records the frequency with which var-
ious 2-item combinations were purchased.
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Table C.3: Most frequently purchased 2-item combinations (C)

Freq. Pct. Cum. Pct.

Berries+Currants, Pears 1275 0.31 87.47
Apricot, Banana 1263 0.31 87.78
Grapes, Kiwi Fruit 1262 0.31 88.09
Grapes, Melons 1237 0.30 88.40
Grapes, Plums 1201 0.30 88.69
Banana, Peaches 1126 0.28 88.97
Banana, Mango 1109 0.27 89.24
Easy Peelers, Plums 1087 0.27 89.51
Banana, Dates 1060 0.26 89.77
Easy Peelers, Orange 1060 0.26 90.04
Apples, Grapefruit 986 0.24 90.28
Grapes, Nectarines 980 0.24 90.52
Easy Peelers, Melons 963 0.24 90.76
Easy Peelers, Lemon 949 0.23 90.99
Berries+Currants, Pineapples 899  0.22 91.21
Grapes, Lemon 871 0.21 91.43
Berries+Currants, Peaches 870 0.21 91.64
Easy Peelers, Kiwi Fruit 861 0.21 91.85
Berries+Currants, Mango 842  0.21 92.06
Apples, Pineapples 818  0.20 92.26
Orange, Pears 818  0.20 92.47
Nectarines, Plums 791  0.19 92.66
Cherries, Apples 774 0.19 92.85
Lemon, Orange 741 0.18 93.03
Avocado, Easy Peelers 699 0.17 93.21
Easy Peelers, Nectarines 691 0.17 93.38
Apricot, Berries+Currants 673 0.17 93.54
Apples, Mango 664 0.16 93.71
Pears, Plums 618 0.15 93.86
Apples, Peaches 611  0.15 94.01
Avocado, Grapes 575 0.14 94.15
Grapes, Pineapples 572 0.14 94.29
Cherries, Grapes 556  0.14 94.43
Lemon, Lime 542 0.13 94.56
Grapes, Grapefruit 513 0.13 94.69

Note: The table records the frequency with which var-
ious 2-item combinations were purchased.
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Another way to see the variety of choices and the potential role of complementarities is
to look at the frequency of basket size conditional on fruit choice. Tables C.4-C.5 show, con-
ditional on purchase of a fruit type, how frequently each basket size was purchased. Except
for bananas, cherries, and lemons, all categories are more likely to be purchased in combina-
tions than as stand-alone categories. The relative frequencies of basket size vary across fruit
categories and the larger baskets are usually less frequent. These patterns strongly violate

the usual independence assumptions of typical discrete choice demand models.
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Table C.4: Number of categories purchased conditional on fruit type (A)

Size of fruit basket

1 2 3 4 5 6 Total

Apricot 425 618 656 560 409 681 3349
12.69 18.45 19.59 16.72 1221 20.33 100.00

Avocado 5099 4592 3903 2879 1938 2399 20810
2450 2207 1876 13.83 9.31 11.53 100.00
Banana 121133 103981 71415 39854 20041 15468 371892
3257 2796 19.20 10.72 539 416  100.00
Berries+Currants 46458 37782 28220 18430 11102 10739 152731
3042 2474 1848 12.07 727  7.03  100.00

Cherries 2611 3296 2778 2040 1336 1731 13792
1893 2390 20.14 1479 9.69 1255 100.00

Dates 1104 867 703 494 285 416 3869
2853 2241 1817 1277 737 10.75 100.00
Apples 09971 76517 59414 34882 18040 14545 263369
22777 29.06 2256 1324 6.85  5.52  100.00
Easy Peelers 30193 35914 30488 18977 10402 9099 135073
22.35 26,59 2257 14.05 770  6.74 100.00
Grapes 36085 39580 33187 22622 13088 11627 156189
23.10 2534 21.25 1448 838 7.44  100.00

Grapefruit 2387 2985 2930 2567 1837 2522 15248
15.65 19.58 19.22 16.83 12.18 16.54 100.00

Kiwi Fruit 4297 6561 6821 5705 4081 5062 32527
13.21 20.17 2097 1754 12,55 15.56 100.00

Lemon 8175 7736 6671 5183 3601 4227 35593
2297 2173 1874 1456 10.12 11.88 100.00

Lime 975 1372 1302 1082 835 1211 6777
14.39  20.24 19.21 1597 1232 17.87 100.00

Lychees 182 210 226 170 126 200 1114
16.34 1885 20.29 1526 11.31 17.95 100.00

Note: The table records the frequency of each fruit basket size conditional
on purchasing the listed fruit category. Column 1 lists the fruit categories.
The middle columns record the frequencies. The final column records the
total number of observations of each type.
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Table C.5: Number of categories purchased conditional on fruit type (B)

Size of fruit basket

1 2 3 4 5 6 Total

Mango 2074 2865 3059 2533 1830 2735 15096
13.74 18.98 20.26 16.78 12.12 18.12 100.00

Melons 7669 9212 8553 6539 4494 5378 41845
18.33 22.01 20.44 15.63 10.74 12.85 100.00

Nectarines 6141 8720 8061 6114 4187 4731 37954
16.18 22.98 21.24 16.11 11.03 12.47 100.00

Orange 12404 15247 13809 9562 5739 5838 62599

19.82 24.36 22.06 15.28 9.17 9.33 100.00
Passion Fruit 218 317 283 246 200 328 1592
13.69 19.91 17.78 15.45 12.56 20.60 100.00

Paw-Paws 138 219 234 216 154 261 1222
11.29  17.92 19.15 17.68 12.60  21.36 100.00
Peaches 2811 3855 3528 2667 1766 2247 16874
16.66  22.85  20.91 15.81 1047 13.32 100.00
Pears 11486 20541 22356 16794 10240 9645 91062
12.61 2256  24.55 18.44  11.25 10.59 100.00
Pineapples 4857 2352 4905 3959 2734 3675 25482
19.06  21.00  19.25 15.54  10.73 14.42 100.00
Plums 8947 11592 10874 8150 0423 5893 50879

17.58 2278  21.37 16.02 10.66  11.58  100.00

Pomegranates 559 565 454 346 262 288 2474
2259 2284 1835  13.99 10.59 11.64  100.00
Rhubarb 356 393 380 293 209 236 1867
19.07  21.05  20.35 15.69 11.19 12.64  100.00
Sharon Fruit 341 375 371 340 266 366 2059
16.56  18.21 18.02 16.51 12.92 17.78 100.00
Total 377096 401264 325581 213204 124645 121548 1563338
2412 25.67  20.83 13.64 7.97 7.77 100.00

Note: The table records the frequency of each fruit basket size conditional
on purchasing the listed fruit category. Column 1 lists the fruit categories.
The middle columns record the frequencies. The final column records the
total number of observations of each type.
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D Hedonic price functions

As discussed in Section 6.2 in the paper, for each fruit category we estimate a hedonic price
model

Inp; = Bri+ h(t) +eu

where Inp;; is the price of item ¢ in period ¢, x;; is a vector of characteristics of item ¢ in
period ¢ and h (t) is a 6th order polynomial function of time. Time is measured as the day
within the year. Characteristics included in the regressions are country of origin, branded,
organic, tiering (economy, premium or standard), fascia (one of ten firms in the UK or other),
packaging, online shop, and small store.

Figure D.1 shows price data and imputed prices for 3 representative examples of the 27
fruit categories: apricots, bananas and cherries. Price is observed for each shopping trip
where a particular fruit is purchased. Each figure shows a scatter plot of observed log prices
and imputed log prices. For apricots and cherries, prices rise in the spring and the autumn.
These are periods when fresh apricots and cherries are more costly and more scarce. In
contrast, the price of bananas is relatively flat. The pictures also make clear that at a single
point in time there is a great deal of variability in price. This variation is primarily due to

variation across fascia and variation due to promotions.
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Figure D.1: Prices of apricots, bananas and cherries
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