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Abstract

Consider two parametric models. At least one is correctly specified, but we don’t know which. Both
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Doubly Robust (DR) if it’s consistent no matter which model is correct. We provide a general technique
for constructing DR estimators (assuming the models are over identified). Our Over-identified Doubly
Robust (ODR) technique is a simple extension of the Generalized Method of Moments. We illustrate our
ODR with a variety of models. Our empirical application is instrumental variables estimation, where
either one of two instrument vectors might be invalid.
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1 Introduction

Consider two different parametric models, which we will call G and H. One of these models is correctly

specified, but we don’t know which one (or both could be right). Both models include the same parameter

vector α. An estimator α̂ is called Doubly Robust (DR) if α̂ is consistent no matter which model is correct.

The term double robustness was coined by Robins, Rotnitzky, and van der Laan (2000), but is based

on Scharfstein, Rotnitzky, and Robins (1999) and the augmented inverse probability weighting average

treatment effect estimator introduced by Robins, Rotnitzky, and Zhao (1994). In their application α is a

population Average Treatment Effect (ATE).

We provide a general technique for constructing doubly robust (DR) estimators. The main requirements

for applying our method is that models G and H each be characterized by a set of moment conditions, and

each is over identified. We therefore call our method Over-identified Doubly Robust (ODR) estimation.

Our ODR takes the form of a weighted average of Hansen’s (1982) Generalized Method of Moments (GMM)

based estimates of α, and has similar root-n asymptotics to GMM.

The main drawback of existing DR estimators is that they are not generic, meaning that for each

problem, one needs to find a DR estimator, which can then be used only for that one specific application.

No general method exists for finding or constructing DR estimators, and only a few examples of such

models are known in the literature. Perhaps the closest thing to a general method is Chernozhukov,

Escanciano, Ichimura, Newey, and Robins (2018). These authors derive a set of locally robust estimators,

provide a characterization result showing when these estimators will also be DR and thereby provide some

new examples of constructing DR estimators.1 In contrast, our ODR provides a simple general method of

constructing DR estimators for a very wide class of models.

Most existing applications of DR methods, like ATE estimation, have models G and H that are exactly

identified rather than overidentified. In such cases, it may be possible to add additional overidentifying

moments, and thereby apply our ODR (e.g., in a supplemental appendix, we provide details for doing so

1Chernozhukov, Escanciano, Ichimura, Newey, and Robins (2018) also show that their DR estimators possess some addi-

tional useful asymptotic properties that the ODR estimators we construct may not possess. Ideally, some different terminology

would distinguish between estimators that just have the DR property (including ours and theirs) vs. estimators that have the

additional properties, including local robustness, that they document.
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in the ATE application). However, we do not advise using our ODR for applications where DR methods

already exist, particularly when existing DR methods do not require overidentification. Instead, the main

virtue of our ODR is its widespread potential application to situations where there are not already existing

DR estimators. We provide some examples in section 3 below.

Suppose we have data consisting of n observations of a random vector Z. Assume that the true value of

α satisfies either E [G (Z,α, β)] = 0 or E [H (Z,α, γ)] = 0 (or both) for some known vector valued functions

G and H, and some unknown additional parameter vectors β and γ. Our ODR estimator then consistently

estimates α, despite not knowing which of these two sets of equalities actually holds, for any G and H that

satisfy some regularity and identification conditions.

Consider three different possible estimators for the vector α, called α̂g, α̂h, and α̂f . The estimator α̂g

is a GMM estimator of α that is asymptotically effi cient if just the model G is correctly specified, i.e., if

E [G (Z,α0, β0)] = 0 at the true α0 and β0. Similarly, let α̂h be an asymptotically effi cient GMM estimator

if E [H (Z,α0, γ0)] = 0 at the true α0 and γ0, and let α̂f be a GMM estimator based on both sets of

moments, which would be asymptotically effi cient if both sets of moments hold at α0, β0, and γ0.

One possible approach to estimation of α would be to engage in some form of model selection. Under

our assumptions, model selection would be relatively straightforward. However, model selection has some

disadvantages relative to DR methods, e.g., one needs to correct limiting distributions for pretest bias,

and tests for which model is superior can be inconclusive. In the context of GMM based models, selection

methods like Andrews and Lu (2001), Caner (2009), and Liao (2013) use test-based methods or shrinkage

penalties to select moments that are most likely to be valid.

Another alternative would be model averaging, which is generally not consistent unless both G and H

happen to be correctly specified. Like DR, our ODR avoids these issues. However, our ODR estimator does

take the form of a weighted average of α̂g, α̂h, and α̂f , and so closely resembles GMM model averaging. A

number of model averaging estimators exist for GMM and related models. Kuersteiner and Okui (2010)

apply Hansen’s (2007) model averaging criterion for instruments in linear instrumental variables models.

Averaging across instruments or moments in GMM models is also considered by Martins and Gabriel

(2014), Sueishi (2013), and DiTraglia (2016). Unlike these papers, we do not use typical model averaging

criteria like mean squared error, Bayes weights, or information criteria to choose weights. Instead, we
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construct weights to yield the DR consistency property and for relative effi ciency.

In the next section, we describe our ODR estimator. Section 3 then gives examples of potential

applications of our ODR estimator (additional examples, including showing how existing DR applications

could have alternatively been estimated using our ODR, are provided in the Supplemental Appendix). In

section 4 we show consistency and provide limiting distribution theory for our ODR. Section 5 provides

Monte Carlo simulations and Section 6 gives an empirical application. In Section 7 we analyze properties

of our estimator when the models G and H may be locally misspecified, i.e., where the parameter α0 in the

data generating process is replaced with α0 + δn−s for a constant δ and some s > 0. Section 8 considers

extensions to more than two competing models, and Section 9 concludes. Proofs and additional results are

provided in the Supplemental Appendix.

2 The ODR Estimator

Let Z be a vector of observed random variables, let α, β and γ be vectors of parameters, and assume

G and H are known functions. Assume a sample consisting of n independent, identically distributed (iid)

observations zi of the vector Z.2 The goal is root-n consistent, asymptotically normal estimation of α. Let

α0 denote the true value of α. Define model G to be ‘correct,’or ‘true,’if E [G (Z,α0, β0)] = 0 for some

unique β0. Similarly, define model H to be true if E [H (Z,α0, γ0)] = 0 for some unique γ0. Define model

F to consist of both sets of moments, and model F is true if both models G and H are true.

As discussed in the introduction, we begin with three different possible estimators for the vector α,

called α̂g, α̂h, and α̂f . The estimator α̂g is a GMM estimator of α that would be asymptotically effi cient

if model G is true and model H is not true. Specifically, α̂g (along with β̂g) minimizes the Hansen

(1982) two-step quadratic GMM objective function, which we will call Q̃g(α, β). This α̂g will generally be

inconsistent if G is not true. If model G is true, then nQ̃g(α̂g, β̂g) is asymptotically chi-squared. But more

importantly for us, if model G is true then Q̃g(α̂g, β̂g) itself will converge to zero in probability, and (under

our assumptions) not converge to zero otherwise. We use this property to construct our ODR estimator.

2We assume iid data mainly for convenience. Our ODR is a straightforward generalization of GMM, so it should be

applicable under more general conditions. We mainly require that the GMM estimators and associated objective functions

satisfy some standard properties.
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Analogous to α̂g, let α̂h denote the estimator of α based on the moments E [H (Z,α0, γ0)] = 0, so α̂h

and γ̂h minimize a quadratic GMM objective function Q̃h(α, γ), and are asymptotically effi cient if model

H is true and model G is not true. Finally, let α̂f be the GMM estimator of α based on assuming both sets

of moments E [G (Z,α0, β0)] = 0 and E [H (Z,α0, γ0)] = 0 hold. This α̂f along with β̂f and γ̂f minimizes

a GMM objective function Q̃f (α, β, γ), and is asymptotically effi cient (generally more effi cient than either

Q̃g or Q̃h) if both models G and H are true, but will otherwise generally be inconsistent.

Our proposed ODR estimator is a weighted average of α̂g, α̂h, and α̂f , taking the form

α̂ = ŴfŴgα̂h + Ŵf

(
1− Ŵg

)
α̂g + (1− Ŵf )α̂f (1)

The novelty of our estimator relative to existing model averaging estimators is in the construction of the

weights Ŵg and Ŵf , given below in equations (3) and (5). In particular, we construct these weights so

that, asymptotically, α̂ becomes arbitrarily close to α̂f if both models G and H are true, and otherwise

becomes arbitrarily close to either α̂g or α̂h, depending on which model is true. So, instead of the typical

model averaging criteria such as minimizing mean squared error, we assume at least one of the models is

correctly specified, and choose weights for effi ciency, while satisfying the DR criterion.

2.1 Starting Assumptions

Let g0(α, β) ≡ E{G(Z,α, β)}, h0(α, γ) ≡ E{H(Z,α, γ)}, θ0 ≡ {α0, β0, γ0}, and θ ≡ {α, β, γ}.

Assumption A1: For compact sets Θα, Θβ, and Θγ , α0 ∈ Θα, β0 ∈ Θβ, and γ0 ∈ Θγ . Let Θ =

Θα ×Θβ× Θγ .

Assumption A2: Either 1) g0(α0, β0) = 0, or 2) h0(α0, γ0) = 0, or both hold.

Assumption A2 says that, for some unknown true coeffi cient values α0, β0, and γ0, either model G is

true, or model H is true, or both are true. This is a defining feature of DR estimators, and hence of our

ODR estimator.

Assumption A3: The vector G(Z,α, β) has more elements than the set of elements in α and β. The

vector H(Z,α, γ) has more elements than the set of elements in α and γ.
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If G is correctly specified, so g0(α0, β0) = 0, then there does not exist any {α, β} ∈ Θα × Θβ with

{α, β} 6= {α0, β0} such that g0(α, β) = 0. Otherwise, if G is incorrectly specified, then there does not exist

any {α, β} ∈ Θ satisfying g0(α, β) = 0.

If H is correctly specified, so h0(α0, γ0) = 0, then there does not exist any {α, γ} ∈ Θα× Θγ with

{α, γ} 6= {α0, γ0} such that h0(α, γ) = 0. Otherwise, if H is incorrectly specified, then there does not exist

any {α, γ} ∈ Θα× Θγ satisfying h0(α, γ) = 0.

Assumptions A2 and A3 are identification assumptions. They imply that if G is the true model, then

the true values of the coeffi cients {α0, β0} are identified by g0(α0, β0) = 0, and if H is the true model, then

the true values of the coeffi cients {α0, γ0} are identified by h0(α0, γ0) = 0. Assumption A3 rules out the

existence of alternative pseudo-true values satisfying the ‘wrong’moments, e.g., this assumption rules out

having both g0(α0, β0) = 0 and g0(α1, β1) = 0 for some α1 6= α0.

Note that Assumption A3 is a potentially strong restriction, and is not required by other DR estimators.

Satisfying this assumption essentially implies that models G and H are each over identified. The first part

of Assumption A3 is typically necessary to satisfy the second part, since if G contained the same number of

elements as the set {α, β}, then the equation g0(α, β) = 0 would have as many equations as unknowns, and

so typically a pseudo-true solution α1, β1 would exist satisfying g0(α1, β1) = 0 even if G were misspecified.

Define the following functions:

ĝ(α, β) ≡ 1

n

n∑
i=1

G(Zi, α, β), ĥ(α, γ) ≡ 1

n

n∑
i=1

H(Zi, α, γ),

Q̃g(α, β) ≡ ĝ(α, β)
′
Ω̂g ĝ(α, β), Q̃h(α, γ) ≡ ĥ(α, γ)′Ω̂hĥ(α, γ),

where Ω̂g and Ω̂h are estimates of the usual weighting matrices obtained in two step GMM, which under

correct specification yields asymptotic effi ciency of GMM. In the above definition, Q̃g(α, β) is the stan-

dard Hansen (1982) and Hansen and Singleton (1982) Generalized Method of Moments (GMM) objective

function, which the GMM estimator minimizes to estimate α and β. Similarly, minimizing Q̃h(α, γ) is the

standard GMM estimator for model H. Define α̂g, β̂g, α̂h, and γ̂h by

{α̂g, β̂g} = arg min
{α,β}∈Θα×Θβ

Q̃g(α, β) and {α̂h, γ̂h} = arg min
{α,γ}∈Θα×Θγ

Q̃h(α, γ). (2)

So {α̂g, β̂g} is the standard GMM estimate of model G, and {α̂h, γ̂h} is the standard GMM estimate of
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model H. In our applications, we likewise use the standard effi cient two step GMM method for estimating

the matrices Ω̂g and Ω̂h.

Define Q̃g0(α, β) and Q̃h0(α, γ) by

Q̃g0(α, β) ≡ g0(α, β)′Ωgg0(α, β) and Q̃h0(α, γ) ≡ h0(α, γ)′Ωhh0(α, γ)

for given positive definite matrices Ωg and Ωh, where Ω̂g →p Ωg and Ω̂h →p Ωh.

Assumption A4: Assume there exists {αg(Ωg), βg(Ωg)} ∈ Θα × Θβ such that Q̃
g
0(αg(Ωg), βg(Ωg)) <

Q̃g0(α, β) for all {α, β} ∈ Θα × Θβ\{αg(Ωg), βg(Ωg)} and there exists {αh(Ωh), γh(Ωh)} ∈ Θα × Θγ such

that Q̃h0(αh(Ωh), γh(Ωh)) < Q̃h0(α, γ) for all {α, γ} ∈ Θα ×Θγ\{αh(Ωh), γh(Ωh)}.

Assumption A4 says that, for each of the models G and H, there exists a unique value of the pa-

rameters that minimizes the limiting value of the GMM objective function. Given Assumptions A2

and A3, Assumption A4 will automatically be satisfied for model G when G is correctly specified, with

{αg(Ωg), βg(Ωg)} = {α0, β0}, and similarly for {αh(Ωh), γh(Ωh)} when H is correctly specified, by Lemma

2.3 of Newey and McFadden (1994). That is, for correctly specified models, the minimizing value is the

true value.

The dependence of α, β, and γ on the weighting matrices Ωg and Ωh in Assumption A4 reflects the

fact that, when model G or H is incorrectly specified, the parameter values that minimize the GMM

criterion functions Q̃g0(α, β) and Q̃h0(α, γ) may depend on the choice of weighting matrices Ωg and Ωh. To

save notation, we will omit this dependence when Ωg and Ωh are the standard effi cient two step GMM

weighting matrices. We have similarly dropped the dependence of Q̃g0(α, β) and Q̃h0(α, γ) on Ωg and Ωh to

save notation.

Together with our other Assumptions, Assumption A4 implies that GMM estimators of G or H will also

converge to some (pseudo-true) values when they are misspecified. Consider, e.g., applying the standard

two step GMM estimator to model G if model G is incorrectly specified. In the first step, with the

identity weighting matrix I, we get unique limiting parameter values {αg(I), βg(I)}. The second step

GMM weighting matrix Ωg will then be the limiting value of Ω̂g constructed using consistent estimates of

{αg(I), βg(I)}. The unique pseudo-true values of α, β from the second step of the GMM procedure will
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then be {αg(Ωg), βg(Ωg)}, based on this construction of Ωg. Formalizing this analysis and its implications

will require additional conditions, particularly Assumptions A12 to A15 in section 4 below.

A version of Assumption A4 is also imposed by Hall (2000) and Hall and Inoue (2003) for misspecified

GMM models. Our main reason for having Assumption A4 is to ensure that the weights Ŵf and Ŵg are

asymptotically well behaved, which simplifies derivation of limiting distributions (and asymptotics under

local misspecification). However, some of our results (like consistency of the SODR estimator defined

below) will not require Assumption A4.

2.2 The SODR and ODR estimators

Let cg ≡ g0(αg, βg). Under minimal, standard regularity conditions (see details in the next section),

we have Q̃g(α̂g, β̂g)→p c
′
gΩgcg. If G is correctly specified, then αg = α0 and βg = β0, which makes cg = 0,

so c
′
gΩgcg = 0. What is important for our ODR estimator is that the probability limit of Q̃g(α̂g, β̂g) is zero

if G is correctly specified, and positive otherwise.

Having G correctly specified also means (again with minimal regularity), that n1/2ĝ(α̂g, β̂g)Ω
1/2
g →d

N
(

0, I
k̃g

)
so nQ̃g(α̂g, β̂g) →d χ

2
kg
where the integer k̃g is the number of moments in G and the integer

kg is the degrees of freedom of the chi-squared statistic that nQ̃g converges to if the G model is true. kg

is equal to k̃g minus the number of elements in α and β, which is positive as discussed earlier. However,

if G is incorrectly specified, then cg 6= 0, so c
′
gΩgcg > 0 and nQ̃g(α̂g, β̂g) does not follow the chi-squared

distribution asymptotically. Analogous statements hold for model H.

Define k̃h and kh for model h analogously to k̃g and kg. Let Q̂g(α, β) ≡ Q̃g(α, β)/kg and Q̂h(α, γ) ≡

Q̃h(α, γ)/kh. This scaling by kg and kh is not necessary for our estimator, but improves its finite sample

performance (see below for details).

Define Ŵg by

Ŵg ≡
Q̂g(α̂g, β̂g)

Q̂g(α̂g, β̂g) + Q̂h(α̂h, γ̂h)
. (3)

From the above derivations, we have that, if G is correctly specified and H is not, then

Ŵg →p 0

0 + c
′
hΩhch/kh

= 0,

8



while if H is correctly specified and and G is not, then

Ŵg →p
c
′
gΩgcg/kg

c′gΩgcg/kg + 0
= 1.

Before getting to our ODR estimator given by equation (1), consider the simpler estimator α̃ defined

by

α̃ = Ŵgα̂h +
(

1− Ŵg

)
α̂g. (4)

So α̃ is simply a weighted average of the GMM estimates α̂g and α̂h, where the weights are proportional

to Q̂g and Q̂h. We will call α̃ the SODR (simpler ODR) estimator.

The intuition behind α̃ is straightforward (the asymptotic statements in this paragraph are proved

formally in the next section). Suppose model H is wrong and model G is right, so E [H(Z,α, γ)] 6= 0 for

any α and γ, and E [G(Z,α0, β0)] = 0. Then Q̂g(α̂g, β̂g) goes in probability to zero while the limiting value

of Q̂h(α̂h, γ̂h) is nonzero, so Ŵg, the weight on α̂h in equation (4) will go to zero, and
(

1− Ŵg

)
, the weight

on α̂g, will go to one. As a result, α̃ will have the same probability limit as α̂g, and since model G is right,

this probability limit will be α0. The same logic applies if model H is right and G is wrong, switching

the roles of g and h, and the roles of β and γ. Finally, if both models are right, then α̃ is just a weighted

average of consistent estimators of α0, and so is consistent no matter what values the weights take on. We

therefore obtain the double robustness property that, whichever model is right, α̃→p α0.3

We could have defined the weight Ŵg without scaling each GMM objective function by its degrees of

freedom, i.e., using Q̃g and Q̃h instead of Q̂g and Q̂h in equation (3). If we did this, the estimator would

still be doubly robust. The reason we scale is because, even when a model is correctly specified, in finite

samples the greater is the degrees of freedom of a model, the larger its GMM objective function is likely

to be. Asymptotically, the mean of nQ̃g converges to kg when G is correctly specified, and similarly for

H. So, by scaling, when both models are correctly specified, both nQ̂g and nQ̂h will asymptotically have

mean one. Otherwise, if we didn’t scale, whichever model has more moments would tend to have a larger

GMM objective function value, which would then undesirably penalize that model in finite samples.

3Notice that when both G and H are correctly specified, Ŵg converges to a ratio of correlated chi-squared distributions,

not to a constant. Nevertheless, α̃ is still consistent because α̃ = α̂g + (α̂h − α̂g) Ŵg, and when both are correctly specified,

α̂g →p α0 and α̂h − α̂g →p 0.
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Although the SODR α̃ has the desired DR property, it also has two drawbacks. First, when G and H

are both correct, the ratio Ŵg converges to a random variable rather than a constant, which complicates

the limiting distribution of α̃. Second, when both G and H are correct, α̃ may be ineffi cient, relative to a

GMM estimator that effi ciently combines the moments from both models.

To address both of these issues, reconsider now the third model F , defined as the union of moments of

the models G and H. Specifically, let F (Z,α, β, γ) be the vector valued function consisting of the union

of elements of G(Z,α, β) and H(Z,α, γ). Then, letting f̂(α, β, γ) ≡ 1
n

∑n
i=1 F (Zi, α, β, γ), we can define a

third GMM estimator

{α̂f , β̂f , γ̂f} = arg min
{α,β,γ}∈Θα×Θβ×Θγ

Q̃f (α, β, γ)

where Q̃f (α, β, γ) ≡ f̂(α, β, γ)
′
Ω̂f f̂(α, β, γ). This is effi cient GMM assuming both specifications are correct,

and so uses all the moments from both. If models G and H are correctly specified, then α̂f is at least

as asymptotically effi cient, and generally much more asymptotically effi cient, than α̂g, α̂h, or α̃. Let

cf ≡ f0(αf , βf , γf ) ≡ E{F (Z,αf , βf , γf )}. Then Q̃f (α̂f , β̂f , γ̂f ) →p c
′
fΩfcf , which equals zero if both

models G and H are correctly specified, and is positive otherwise.

We again scale by the degrees of freedom (number of moments in F minus number of elements of α, β,

and γ), denoted kf , defining Q̂f (α̂f , β̂f , γ̂f ) ≡ Q̃f (α̂f , β̂f , γ̂f )/kf . We then define the weight Ŵf by

Ŵf ≡ 1− 1

nτ Q̂f (α̂f , β̂f , γ̂f ) + 1
(5)

for some τ having 0 < τ < 1. Later we discuss selection of the tuning parameter τ , but for consistency

we only require that τ lie between zero and one. Our ODR estimator, given by equation (1), can be

equivalently written as

α̂ = Ŵf α̃+
(

1− Ŵf

)
α̂f . (6)

The intuition now is, if bothG andH are correctly specified, then Q̂f (α̂f , β̂f , γ̂f )→p 0 and nQ̂f (α̂f , β̂f , γ̂f )

converges in distribution to a chi-squared statistic (divided by its degrees of freedom), which means that

nτ Q̂f (α̂f , β̂f , γ̂f ) for 0 < τ < 1 converges in probability to zero. Alternatively, if either G orH is incorrectly

specified, then Q̂f (α̂f , β̂f , γ̂f ) converges in probability to a positive value, so nτ Q̂f (α̂f , β̂f , γ̂f ) diverges to

infinity. Therefore, if both G and H are correctly specified then Ŵf →p 0 and so α̂ has the same limiting

value as α̂f , while if either G or H is incorrectly specified, then α̂ has the same limiting value as α̃, which
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as shown earlier has the same limiting value as either α̂g or α̂h, depending on which is correctly specified.

The estimator α̂ therefore, like α̃, has the desired DR property. We show later that α̂ avoids the

asymptotic issues α̃ has when both G and H are correctly specified, and that α̂ generally performs better

than α̃ in finite samples. This is why α̂ is our preferred ODR estimator. However α̂ has the disadvantages

of being a little more complicated to estimate (since it requires estimating the third model F ), and it

requires selection of a tuning parameter τ .

2.3 Tuning Parameters

One tuning parameter is τ , which for consistency can take any value between zero and one. The larger

τ is, the less weight is put on α̂f in any given sample. So for effi ciency, the more likely it is that both

models G and H are correct, the smaller one would want τ to be. Based on this observation, a choice of τ

that we find works well in Monte Carlo simulations is to let τ = 1− p, where p is the p-value of the Wald

statistic testing the null hypothesis that αg = αh.4 5

Another potential tuning parameter is as follows. Let Λ be any strictly monotonically increasing func-

tion such that Λ (0) = 0 and Λ (·)→∞ when · → ∞. Then nQ̂g(α̂g, β̂g), nQ̂h(α̂h, γ̂h), and nτ Q̂f (α̂f , β̂f , γ̂f )

can be replaced with Λ
(
nQ̂g(α̂g, β̂g)

)
, Λ
(
nQ̂h(α̂h, γ̂h)

)
, and Λ

(
nτ Q̂f (α̂f , β̂f , γ̂f )

)
in the definitions of

the weights Ŵg and Ŵf in equations (3) and (5). The main asymptotic properties of the ODR estimator

are preserved by any such choice of Λ (given suitable choice of τ), but finite sample properties of the

estimator might be improved by different choices of the function Λ. For example, Λ (z) = exp (λz) − 1

for some λ > 0 resembles exponential tilting. Equation (4) already somewhat resembles Bayesian model

averaging, and this choice of Λ would make that resemblance stronger.6 See e.g., Kim (2002) and Martins

and Gabriel (2014).7 Another choice for Λ would be a simple power transform Λ (z) = zλ for λ > 0. We

4Our derivation of the limiting distribution of α̂ assumes τ > 1/2. However, this restriction is only required to handle cases

where αg 6= αh, and the choice of τ = 1− p will indeed asymptotically increase to over 1/2 in those cases.
5Under possible local misspecification, which we consider in section 7 below, choice of τ becomes more complicated, for

two reasons. First, under local misspecification, having a random τ can affect the limiting distribution of α̂. And second, for

some range of rates of local misspecification parameter drift, a relatively large value of τ is needed to avoid complications in

the limiting distribution.
6A key difference with Bayesian or information based weighting is that we weight model G based on the model H objective

function, and vice versa, instead of weighting each model by its own objective function.
7We discuss comparisons of our estimator with Martins and Gabriel (2014) in more detail later, in sections 4.4 and 5.
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consider different choices of Λ in our applications. Overall, we found that the exponential Λ works well,

though choice of Λ had only modest effects on our monte carlo simulations, and virtually no effect on our

empirical estimates.

Finally, we require estimators for the GMM weighting matrices Ω̂g, Ω̂h, and Ω̂f . As discussed later in

section 4.3, these are the standard estimated weighting matrices used in two step GMM, but recentered.

See in particular equation (11).

3 ODR Examples

Before proceeding to show consistency and deriving the limiting distribution of the ODR estimator,

we present two example applications. Both are new applications for which no existing DR estimators

are known. One concerns estimation of preference parameters in consumption Euler equations and asset

pricing kernels. The second is alternative sets of instruments for linear model estimation.

In the Supplemental Appendix, we provide two additional examples, comparing the requirements of

our ODR estimator to existing DR applications. The first discusses average treatment effect estimation,

while the second concerns additive regression models.

3.1 Preference Parameter Estimates

One of the original applications of GMM estimation, Hansen and Singleton (1982), was the estimation

of marginal utility parameters and of pricing kernels. Consider a lifetime utility function of the form

uτ = E

(∑T

t=0
btRtU (Ct, Xt, ρ) |Wτ

)
where uτ is expected discounted lifetime utility in time period τ , b is the subjective rate of time preference,

Rt is the time t gross returns from a traded asset, U is the single period utility function, Ct is observable

consumption expenditures in time t, Xt is a vector of other observable covariates that affect utility, ρ

is a vector of utility parameters, and Wτ is a vector of variables that are observable in time period τ .

Maximization of this expected utility function under a lifetime budget constraint yields Euler equations of

the form

E

(
bRt+1

U ′ (Ct+1, Xt+1, ρ)

U ′ (Ct, Xt, ρ)
− 1 |Wτ

)
= 0 (7)
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where U ′ (Ct, Xt, ρ) denotes ∂U (Ct, Xt, ρ) /∂Ct. If the functional form of U ′ is known, then this equation

provides moments that allow b and ρ to be estimated using GMM. But suppose we have two different pos-

sible specifications of U ′, and we do not know which specification is correct. Then our ODR estimator can

be immediately applied, replacing the expression in the inner parentheses in equation (7) with G(Z,α, β)

or H(Z,α, γ) to represent the two different specifications. Here α would represent parameters that are the

same in either specification, including the subjective rate of time preference b.

To give a specific example, a standard specification of utility is constant relative risk aversion with

habit formation, where utility takes the form

U (Ct, Xt, ρ) =
[Ct −M (Xt)]

1−ρ − 1

1− ρ

where Xt is a vector of lagged values of Ct, the parameter ρ is the coeffi cient of relative risk aversion, and

the functionM (Xt) is the habit function. See, e.g., Campbell and Cochrane (1999) or Chen and Ludvigson

(2009). While this general functional form has widespread acceptance and use, there is considerable debate

about the correct functional form for M , including whether Xt should include the current value of Ct or

just lagged values. See, e.g., the debate about whether habits are internal or external as discussed in the

above papers. Rather than take a stand on which habit model is correct, we could estimate the model by

ODR.

To illustrate, suppose that with internal habits the functionM (Xt) would be given by G̃ (Xt, β), where

G̃ is the internal habits functional form. Similarly, suppose with external habits M (Xt) would be given

by H̃ (Xt, γ) where H̃ is the external habits specification. Then, based on equation (7), we could define

G(Z,α, β) and H(Z,α, γ) by

G(Z,α, β) =

bRt+1

(
Ct+1 − G̃ (Xt+1, β)

)−ρ
(
Ct − G̃ (Xt, β)

)−ρ − 1

Wτ

and

H(Z,α, γ) =

bRt+1

(
Ct+1 − H̃ (Xt+1, γ)

)−ρ
(
Ct − H̃ (Xt, γ)

)−ρ − 1

Wτ .

In this example, we would have α = (b, ρ), and so would consistently estimate the discount rate b and

the coeffi cient of relative risk aversion ρ, no matter which habit model is correct. To satisfy the required

overidentification (Assumption A3), we would want Wτ to have more elements than (α, β) and more than
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(α, γ). This would generally be the case, because the potential information set of consumers at time t is

large relative the the number of parameters in the model.

3.2 Alternative Sets of Instruments

Consider a parametric model

Y = M(W,α) + ε

where Y is an outcome, W is a vector of observed covariates, M is a known functional form, α is a vector

of parameters to be estimated, and ε is an unobserved error term. The errors ε may be correlated with W ,

so to estimate the model we wish to find instruments that are uncorrelated with ε. Let R and Q denote

two different vectors of observed covariates that are candidate sets of instruments. One may be unsure if

either R or Q are valid instrument vectors or not, where validity is defined as being uncorrelated with ε.

We may then define model G by E (εR) = 0, so G(Z,α) = [Y −M(W,α)]R and define model H by

E (εQ) = 0, so H(Z,α) = [Y −M(W,α)]Q. With these definitions we can then immediately apply the

ODR estimator. In this case both β and γ are empty, but more generally, the variables R and Q could

themselves be functions of covariates and of parameters β and γ, respectively.

A simple example that we consider in our Monte Carlo analysis is where M(W,α) = W ′α, so the G

model consists of the moments E [(Y −W ′α)R] = 0 and theH model is the moments E [(Y −W ′α)Q] = 0.

The overidentification condition, Assumption A3, is generally satisfied when Q and R each have more

elements than W .

Next consider a richer example, which we later empirically apply, based on a model of Lewbel (2012).

Suppose Y = X
′
αx+Sαs+ε, where X is a K-vector of observed exogenous covariates (including a constant

term) satisfying E (εX) = 0, and S is an endogenous or mismeasured scalar covariate that is correlated

with ε. The goal is estimation of the set of coeffi cients α = {αx, αs}.

The standard instrumental variables based estimator for this model would consist of finding one or more

covariates L such that E (εL) = 0. Then the set of instruments R would be defined by R = {X,L}. The

resulting GMM (or linear two stage least squares) estimator would be based on the moments E [G(Z,α)] =
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0 where G(Z,α) is given by the stacked vectors

G(Z,α) =


X
(
Y −X ′αx − Sαs

)
L
(
Y −X ′αx − Sαs

)
 . (8)

The main diffi culty with applying this two stage least squares or GMM estimator is that one must find

one or more covariates L to serve as instruments.

Lewbel (2012) proposes an alternative estimator that, rather than requiring that one find instruments L,

instead constructs instruments based on assumptions regarding heteroscedasticity. This estimator consists

of first linearly regressing S on X, and obtaining the residuals from that regression. Then a vector of

instruments P is constructed by setting P equal to demeaned X (excluding the constant) times these

residuals. This constructed vector P is then used instead of L above as instruments.8 As shown in Lewbel

(2012), one set of conditions under which the vector P can be a valid set of instruments is when the

endogeneity in S is due to classical measurement error in S.

Let Xc denote the vector X with the constant removed. Algebraically, we can write the instruments

obtained in this way as R = {X,P} where P = (Xc − γ1) (S −X ′γ2), and where the vectors γ1 and γ2 in

turn satisfy E (Xc − γ1) = 0 and E [X (S −X ′γ2)] = 0. An effi cient estimator based on this construction

would be standard GMM using the moments E [H(Z,α, γ)] = 0 where H(Z,α, γ) is a vector that consists

of the stacked vectors

H(Z,α, γ) =



Xc − γ1

X (S −X ′γ2)

X
(
Y −X ′αx − Sαs

)
(Xc − γ1) (S −X ′γ2)

(
Y −X ′αx − Sαs

)


. (9)

The moments given by E [G(Z,α)] = 0 or E [H(Z,α, γ)] = 0 correspond to two very different sets of

identifying conditions. ODR estimation based on these moments therefore allows for consistent estimation

of α if either one of these sets of conditions hold. To satisfy the over identification Assumption A3, Xc and

L must each have two or more elements.

As a motivating example, consider the following application involving Engel curve estimation (see Lew-

bel 2008 for a short survey, and references therein). Suppose Y is a consumer’s expenditures on food,

8This estimator is implemented in the STATA module IVREG2H by Baum and Schaffer (2012).
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X is a vector of covariates that affect the consumer’s tastes, and S is the consumer’s total consumption

expenditures (i.e., their total budget, which must be allocated between food and non-food expenditures).

Suppose, as is commonly the case, that S is observed with some measurement error. To deal with this

budget measurement error, a commonly employed set of instruments L consists of functions of the con-

sumer’s income. However, validity of functions of income as instruments for total consumption in a food

Engel curve assumes separability between the consumer’s decisions on savings and their within period food

expenditure decision, and this behavioral assumption may or may not be valid. It is therefore useful to

consider the alternative set of potential instruments P defined above. Use of P does not require finding

covariates from outside the model, like income, to use as instruments, but does require that certain mea-

surement error assumptions hold. Our later empirical application applies ODR to this application, thereby

obtaining consistent estimates of α if either L or P are valid instruments.

4 The ODR Estimator Asymptotics

In this section we show consistency of our ODR estimator α̂, and then derive its limiting distribution,

which is root n consistent and asymptotically normal. We make the following additional assumptions. What

these assumptions mostly do is ensure that GMM estimates of models G, H, and F are each asymptotically

normal around the true values when correctly specified, and are suitably bounded in probability around

the pseudo-true values when misspecified. We do not require asymptotic normality under misspecification.

Assumption A5: G(Z,α, β), H(Z,α, γ) and F (Z,α, β, γ) are continuous at {α, β} ∈ Θα×Θβ, {α, γ} ∈

Θα ×Θγ , and {α, β, γ} ∈ Θα ×Θβ ×Θγ respectively, with probability one.

Assumption A6: Denote ||A|| ≡ {trace(A′A)}1/2 for any matrix A. E[sup{α,β}∈Θα×Θβ
||G(Z,α, β)||] <

∞, E[sup{α,γ}∈Θα×Θγ ||H(Z,α, γ)||] <∞, and E[sup{α,β,γ}∈Θα×Θβ×Θγ ||F (Z,α, β, γ)||] <∞.

Taken together Assumptions A1, A2, A3, A5, and A6, are standard conditions that suffi ce for consis-

tency of the GMM estimators of models G, H, and F when they are correctly specified. See, e.g., Theorem

2.1 in Newey and McFadden (1994). Let ∇θ(·) ≡ ∂(·)/∂θ be arranged such that its row dimension is that

of θ and let ∇θ′(·) ≡ {∇θ(·)}′. Define θg0 ≡ {α0, β0}, θh0 ≡ {α0, γ0}, θf0 ≡ {α0, β0, γ0}, θg ≡ {αg, βg}, θh ≡
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{αh, γh}, and θf ≡ {αf , βf , γf}. If the models G and H are correctly specified, θg0 = θg, θh0 = θh, and

θf0 = θf .

Assumption A7: With probability one, G(Z,α, β), H(Z,α, γ), and F (Z,α, β, γ) are twice continu-

ously differentiable in a neighborhood ℵg of θg, ℵh of θh, and ℵf of θf , respectively.

Assumption A8: Hg(θ
g
0) ≡ ∇θg0(θg0)Ωg∇θ′g0(θg0), Hh(θh0 ) ≡ ∇θh0(θh0 )Ωh∇θ′h0(θh0 ), and Hf (θf0 ) ≡

∇θf0(θf0 )Ωf∇θ′f0(θf0 ) are non-singular.

Assumption A9: {αg, βg}, {αh, γh}, and {αf , βf , γf} lie in the interior of Θα×Θβ, Θα×Θγ , and Θα×

Θβ ×Θγ .

Assumption A10: V ar [G(Z,αg, βg)], V ar [H(Z,αh, γh)], and V ar [F (Z,αf , βf , γf )] exist and are

positive definite.

Assumption A11: E[sup{α,β}∈ℵg ||∇θgG(Z,α, β)||] < ∞, E[sup{α,γ}∈ℵh ||∇θhH(Z,α, γ)||] < ∞, and

E[sup{α,β,γ}∈ℵf ||∇θfF (Z,α, β, γ)||] <∞.

Assumption A7, A9, A10, and A11 are regularity conditions for a uniform weak law of large numbers

and the asymptotic normality of GMM. Assumption A8 rules out perfect collinearity in linearized moment

conditions. Assumption A11 gives interchangeability of ∇(·) and E(·) so that

∇θg0(θg) = E{∇θgG(Z,αg, βg)}, ∇θh0(θh) = E{∇θhH(Z,αh, γh)}, ∇θf0(θf ) = E{∇θfF (Z,αf , βf , γf )}.

Assumption A12: Ω̂g, Ω̂h, and Ω̂f are consistent estimators of Ωg, Ωh, and Ωf , respectively, such

that
√
N(Ω̂g − Ωg),

√
N(Ω̂h − Ωh) and

√
N(Ω̂f − Ωf ) are Op(1), where Ω−1

g = V ar [G(Z,αg, βg)], Ω−1
h =

V ar [H(Z,αh, γh)], and Ω−1
f = V ar [F (Z,αf , βf , γf )].

Assumption A13: V ar [∇θgG(Z,αg, βg)], V ar [∇θhH(Z,αh, γh)], and V ar [∇θfF (Z,αf , βf , γf )] exist.

Assumption A14: Letting∇θgθg′(·) ≡ ∂(·)/∂θg∂θg′, E[sup{α,β}∈ℵg ||∇θgθg′G(Z,α, β)||] <∞, E[sup{α,γ}∈ℵh ||∇θhθh

∞, and E[sup{α,β,γ}∈ℵf ||∇θfθf ′F (Z,α, β, γ)||] <∞.

Assumption A15: {Hg(θ
g)−Mg}, {Hh(θh)−Mh}, and {Hf (θf )−Mf} are non-singular where Mg,

Mh, and Mf are functions of the population moment, weight matrix, and the second derivative of the

corresponding moments defined in the Supplemental Appendix.
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Assumption A12 to A15 are conditions yielding Op( 1√
n

) boundedness of each GMM estimator when the

corresponding model is misspecified, e.g., when model G is misspecified we get
√
n(θ̂g−θg) = Op(1). To see

this, it can be shown that
√
n(θ̂g−θg) includes three terms; the first is

√
n{∇αĝ(θg)−∇αg0(θg)}, the second

is
√
n(Ω̂g−Ωg), and the last is a Hessian matrix involving the second-order derivatives of g(·). Assumption

A14 ensures that the uniform weak law of large numbers holds for this Hessian matrix. Assumption A13

makes ∇αĝ(θg) asymptotically normal, which in turn makes the first term Op(1). Assumption A12 makes

the second term Op(1). We could have directly assumed that
√
n{∇αĝ(θg) −∇αg0(θg)} = Op(1), instead

of Assumption A13.

If we assume conditions for the asymptotic normality of Ω̂g, instead of Assumption A12, then we

could specify the asymptotic distribution of nQ̂g even under misspecification.9 However, we do not require

the asymptotic distribution of nQ̂g when model G is misspecified. All we require in that case is that

nQ̂g diverges as n → ∞ (and similarly for nQ̂h). We therefore only impose Assumption A12 instead of

asymptotic normality of estimated variance matrices. Assumption A12 is generally satisfied by the standard

two-step GMM estimators for Ω̂g, Ω̂h, and Ω̂f , regardless of whether each model is misspecified or not,

provided that the sample moments are demeaned, e.g.,. Ω̂g is based on an estimate of V ar [G(Z,αg, βg)]

rather than E [G(Z,αg, βg)G(Z,αg, βg)
′].

Assumption A15 is analogous to Assumption A8 for misspecified models. The addition of Assumption

A12 to A15 ensure that the probability limits of Ŵg and ŴgŴf remain well behaved when either model

G or H is misspecified. Assumptions A12 to A15 are adapted from Hall and Inoue (2003), who use them

to derive asymptotics for possibly misspecified GMM estimates.

9 If the first two terms are asymptotically normal, then
√
n(θ̂g − θg) is also, even when model G is misspecified. Under

these conditions, we can show that nQ̂g is asymptotically chi-squared when the model is correct (or locally misspecified with

s > 1
2
, for s in section 7), is asymptotically a noncentral chi-squared with a constant noncentrality parameter when the model

is locally misspecified (with s = 1
2
), and is noncentral chi-squared with a noncentrality parameter that diverges as n → ∞

when the model is misspecified (or has s < 1
2
).
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4.1 ODR Consistency

Lemma 1: Suppose Assumptions A1 to A15 hold. Then, for any τ with 0 < τ < 1, Ŵf and ŴfŴg,

defined in equations (5) and (3), have finite probability limits. Specifically,

Case 1) G and H are correctly specified =⇒ Ŵf →p 0 and ŴfŴg →p 0,

Case 2) G is correctly specified but H is not =⇒ Ŵf →p 1 and ŴfŴg →p 0,

Case 3) H is correctly specified but G is not =⇒ Ŵf →p 1 and ŴfŴg →p 1.

Lemma 1 is proved in the Supplemental Appendix, but the intuition is as follows. When either G or

H is misspecified, we have Q̂f →p c
′
fΩfcf/kf > 0, so nτ Q̂f diverges to infinity and Ŵf →p 1. If G is

correct but H is not, then Q̂g →p 0 while the limiting value of Q̂h is nonzero. Thus, Ŵg →p 0 and so

ŴgŴf →p 0. If H is correct but G is not, following the same logic but switching the roles of g and h,

Ŵg →p 1 and so ŴgŴf →p 1. When both G and H are correctly specified, so F is correctly specified,

we have Q̂f →p c
′
fΩfcf/kf = 0, so nτ Q̂f →p 0 and therefore Ŵf →p 0, and in this case both nQ̂g and

nQ̂h converge to chi-squared distributions so Ŵg converges to a ratio of possibly dependent chi-squares,

which is bounded in probability, making ŴgŴf →p 0.

The following theorem shows consistency of the ODR estimator α̂ in equation (1). We will further

discuss construction of Ω̂g, Ω̂h, and Ω̂f later, but note for now that these are recentered GMM weight

matrix estimates using the sample moments in mean deviation form.

Theorem 1: Under Assumptions A1 to A15, for α̂ given by equation (1), α̂→p α0.

Proof of Theorem 1: By A1, A2, A3, A5, and A6, the conditions of Theorem 2.1 of in Newey and

McFadden (1994) (uniqueness, compactness, continuity, and uniform convergence) hold for GMM based on

model G, model H, or both when these moments are correctly specified. Therefore, if g0(α0, β0) = 0 then

the GMM estimator of model G is consistent, if h0(α0, γ0) = 0 holds then the GMM estimator of model

H is consistent, and if both the equalities hold parts hold then the GMM estimator of F is consistent.

For simplicity, let Q̂g ≡ Q̂g(α̂g, β̂g), Q̂
h ≡ Q̂h(α̂h, γ̂h), Q̂f ≡ Q̂f (α̂f , β̂f , γ̂f ), Qg0 ≡ c

′
gΩgcg/kg, Qh0 ≡

c
′
hΩhch/kh, and Q

f
0 ≡ c

′
fΩfcf/kf . Assumption A2 says that either g0(α0, β0) = 0, h0(α0, γ0) = 0, or both.

Consider each of these three cases.
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Case 1) Suppose both g0(α0, β0) = 0 and h0(α0, γ0) = 0. Then {α̂g, β̂g} →p {α0, β0}, {α̂h, γ̂h} →p

{α0, γ0}, and {α̂f , β̂f , γ̂f} →p {α0, β0, γ0}, so Q̂g →p 0, Q̂h →p 0, and Q̂f →p 0. By Lemma 1, Ŵf and

ŴfŴg both converge to zero, and the consistency of α̂ therefore follows from consistency of α̂f .

Case 2) Suppose that g0(α0, β0) = 0 and h0(α0, γ0) 6= 0. Then {α̂g, β̂g} →p {α0, β0}, {α̂h, γ̂h} →p

{αh, γh}, and {α̂f , β̂f , γ̂f} →p {αf , βf , γf}. By Lemma 1, Ŵg converges to zero and Ŵf converges to one

in probability. The consistency of α̂ then follows from consistency of α̂g.

Case 3) Suppose that g0(α0, β0) 6= 0 and h0(α0, γ0) = 0. Then {α̂g, β̂g} →p {αg, βg}, {α̂h, γ̂h} →p

{α0, γ0}, and {α̂f , β̂f , γ̂f} →p {αf , βf , γf}. By Lemma 1, Ŵg and Ŵf both converge to one in probability,

so consistency of α̂ follows from consistency of α̂h. Q.E.D.

4.2 Limiting Distribution

We now provide the asymptotic distribution of α̂, and a simple consistent estimator of its limiting

variance. Define η̂gi by

η̂gi ≡ Â
−1
g ∇αĝ(θ̂g)Ω̂∗gG(Zi, θ

g),

where Âg ≡ ∇αĝ(θ̂g)Ω̂∗g∇αĝ(θ
g
), Ω̂∗g ≡ Ω̂1/2

g Π̂gΩ̂
1/2
g ,

Π̂g ≡ Ik̃g − Ω̂1/2
g ∇g′ ĝ(θ

g
){∇β ĝ(θ̂g)Ω̂g∇β′ ĝ(θ

g
)}−1∇β ĝ(θ̂g)Ω̂1/2

g .

The function η̂gi is a consistent estimator of the GMM influence function for α̂g if model G is correctly

specified. Define η̂hi and η̂
f
i analogously, by replacing g with h or f . These correspond to the standard

influence functions for GMM estimation, though for completeness we derive these influence functions under

our assumptions in the Supplemental Appendix.

Theorem 2: Suppose Assumptions A1 to A15 hold. Then, for 1/2 < τ < 1, there exists a matrix Ṽ

such that

√
n(α̂− α0)→d N(0, Ṽ ),

and

1

n

∑n

i=1
η̂iη̂
′
i →p Ṽ (10)

where η̂i ≡ ŴfŴgη̂
h
i + Ŵf (1− Ŵg)η̂

g
i + (1− Ŵf )η̂fi .
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The first part of Theorem 2 states that the ODR estimator α̂ is root n consistent and asymptotically

normal, while the second part gives a consistent estimator for the limiting variance of α̂. The proof of

Theorem 2 is given in the Supplemental Appendix. The basic structure of the proof follows Newey and

McFadden (1994) for multistep parametric estimators.

Note that while consistency only requires 0 < τ < 1, Theorem 2 assumes τ > 1/2 to ensure
√
n-

consistency of α̂. This condition is only required for the case where αg 6= αh.

The estimator of Ṽ given in equation (10) does not require knowing which of the models G or H is

correct. Nevertheless, as shown in the Supplemental Appendix, Ṽ will either equal a matrix Ṽ g or Ṽ h or

Ṽ f , depending on whether models G, H, or both are correctly specified.

A fact that complicates the derivation of Theorem 2 is that η̂hi does not consistently estimate the

influence function of α̂h if model H is not correctly specified. Similarly, η̂gi is not consistent if model

G is misspecified, and η̂fi is not consistent if either G or H is misspecified. However, it turns out that

to estimate the limiting variance of α̂, we do not need to consistently estimate the influence function of

any incorrectly specified GMM. For example, in the limiting variance formula for α̂, the function η̂hi is

multiplied by ŴfŴg, so if model H is incorrectly specified then ŴfŴg goes to zero. We therefore only

need an estimate for ηhi that is consistent when model H is correctly specified, and that estimate is the

standard GMM influence function η̂hi . A similar analysis applies to the other influence functions. This

turns out to be a convenient feature of our estimator, since we do not need to construct influence function

estimators that are consistent for incorrectly specified models.

4.3 Effi ciency and Numerical Issues

For asymptotic effi ciency of α, we could consider estimating the weighting matrices Ω̂g, Ω̂h, and Ω̂f

to minimize the variance given by equation (10). However, the standard two step GMM estimators of

Ω̂g, Ω̂h, and Ω̂f should be at least close to effi cient for α̂. This is because the ODR objective function

is asymptotically dominated by the GMM objective function of the correct model when either G or H is

correct, and dominated by the GMM objective function of model F when both models are correct.

The scaling of moments affects the relative magnitudes of Q̂g, Q̂h, and Q̂f (and hence the estimated
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weights Ŵg and Ŵf ). It is therefore numerically desirable in finite samples to have these matrices be

comparable in magnitude. The standard two step GMM estimators of Ω̂g, Ω̂h, and Ω̂f help make Q̂g, Q̂h,

and Q̂f comparable. Specifically, standard two step GMM makes nQ̂g have a mean of one asymptotically

when model G is right, and similarly for nQ̂h and nQ̂f (this is also the role of scaling each by the degrees

of freedom kg, kh, and kf , respectively). We therefore find it desirable to use the standard GMM estimates

of Ω̂g and Ω̂h (as in Assumption A12) even if that possibly sacrifices a small amount of effi ciency. In

particular, we let

Ω̂g ≡
1

n

∑n

i=1

(
G(Zi, α̂1g, β̂1g)−G(Z, α̂1g, β̂1g)

)(
G(Zi, α̂1g, β̂1g)−G(Z, α̂1g, β̂1g)

)′
(11)

where α̂1g and β̂1g are first step GMM estimates based on a constant weighting matrix such as the identity

matrix, and G is the sample average of G(Zi, α̂1g, β̂1g). Analogous formulas apply for Ω̂h and Ω̂f .

4.4 Comparison to Model Averaging

The weights in our SODR and ODR estimators can be compared to more traditional model averaging

methods. An example of GMM model averaging (for instrument selection in linear instrumental variables

models) is Martins and Gabriel (2014), who construct weights based on Andrews (1999)’s J-statistic based

GMM model selection criteria. To most readily compare their weights to ours, consider the special case

of our ODR in which the candidate models G and H are linear regressions with different sets of instru-

ments. This comparison is particularly apt because our simulations and empirical application are choice

of instruments in linear models.

Martins and Gabriel (2014) provide a variety of estimators, but the one that is closest to our model is

α̃MG ≡ ŴMG
g α̂h +

(
1− ŴMG

g

)
α̂g

where ŴMG
g ≡

exp
(
−1

2(nQ̃h − κnkh)
)

exp
(
−1

2(nQ̃h − κnkh)
)

+ exp
(
−1

2(nQ̃g − κnkg)
)

=

1

exp(− 1
2

(nQ̃g−κnkg))
1

exp(− 1
2

(nQ̃h−κnkh))
+ 1

exp(− 1
2

(nQ̃g−κnkg))

and κn = o(n) is a sequence depending on the selection criteria, e.g. κn = ln(n) for a Bayesian Information

Criterion. This estimator is similar to our SODR with an exponential tuning function Λ. For both
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estimators, the numerator of the weight on model H depends on the criterion for model G (i.e., on Q̃g)

designed to put all weight on model H when model G is wrong but H is correct, and vice versa.

A difference between α̃MG and SODR (with exponential Λ) is in the degrees of freedom term. In our

weight, the scale of each GMM objective function is adjusted by its degrees of freedom in a multiplicative

way, while the objective function in ŴMG
g is adjusted in an additive way, multiplied by the extra term κn.

Note that Martins and Gabriel (2014) assume both models are correctly specified, and they do not account

for the weight ŴMG
g having a possibly random probability limit.

In contrast to SODR, our preferred ODR estimator differs more substantially from α̃MG in its con-

struction of weights. We compare the finite sample performance of both our SODR and ODR estimators

to α̃MG in the next section.

5 Simulation Results

Here we do some Monte Carlo analyses to investigate small sample properties of our estimator. Our

design is two competing sets of instruments as in section 3.2. For each simulation, we draw n = 100 or

n = 500 independent, identically distributed observations of the random vector (Y,W,R1, R2, Q1, Q2). We

generate data from the model

Y = α0 + α1W + ε.

The goal is estimation of α = (α0, α1) = (1, 1). The regressor W is endogenous (correlated with ε),

so estimation is by instrumental variables. Model G assumes E (ε) = E (εR1) = E (εR2) = 0, meaning

that R = (1, R1, R2)′ is a vector of valid instruments for instrumental variables estimation. Model H

assumes E (ε) = E (εQ1) = E (εQ2) = 0, making Q = (1, Q1, Q2)′ be a vector of valid instruments. Here

Z = (Y,W,R,Q), G (Z,α) = (Y − α0 − α1W )R, and H (Z,α) = (Y − α0 − α1W )Q. In this application

there is no β or γ.

We let W = 1 + 4R1 + R2 + 2Q1 + Q2 + ε. Having the 4 and 2 in this equation means that model G

has stronger instruments (i.e., instruments more highly correlated with the endogenous regressor W ) than

model H, and that R1 and Q1 are stronger instruments than R2 and Q2.

We let R1, R2, Q1, Q2, and ε be standard normals, with corr(Rj , ε) = ρRj , corr(Qj , ε) = ρQj , for j = 1, 2,

and all the other correlations among these normals are zero. We consider three different simulation designs
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that vary by correlations ρRj and ρQj . The first design takes ρRj = ρQj = 0, which makes both models

right (both sets of instruments are valid). The second takes ρR1 = ρR2 = 0, ρQ1 = 0.4, and ρQ2 = 0.6,

which makes model G right (i.e., R are valid instruments so G is correctly specified) and model H be

wrong (i.e., Q are not valid instruments, because they correlate with the model error ε). The third takes

ρR1 = 0.4, ρR2 = 0.6 and ρQ1 = ρQ2 = 0, which makes model H right and model G wrong.

For the tuning function Λ discussed in sections 2.3 and 4.4, we consider two different choices; Λ1

(
nQ̂
)

=

exp
(
nQ̂
)
− 1 and Λ2(nQ̂) = (nQ̂)2 so the weighting functions Ŵg and Ŵf are

Λ1 : Ŵg =
exp{nQ̂g(α̂g, β̂g)} − 1

exp{nQ̂g(α̂g, β̂g)}+ exp{nQ̂h(α̂h, γ̂h)} − 2
, Ŵf = 1− 1

exp{nτ Q̂f (α̂f , β̂f , γ̂f )}
, (12)

Λ2 : Ŵg =
{nQ̂g(α̂g, β̂g)}2

{nQ̂g(α̂g, β̂g)}2 + {nQ̂h(α̂h, γ̂h)}2
, Ŵf = 1− 1

{nτ Q̂f (α̂f , β̂f , γ̂f )}2 + 1
. (13)

For the tuning parameter τ , we use τ = 1− p, where p is the p-value of the Wald statistic as discussed in

section 2.3.

We report eight estimates of α1 and α0 for each simulation. First is GMM based on the model G

moments, denoted by GMMg (which is only consistent if model G is right). Second is GMM based on the

H moments, denoted by GMMh (which is only consistent if model H is right). Third is GMM based on

both sets of moments, denoted by GMMf (which is consistent, and more effi cient than either the first or

second set of estimates, only if both models are right). Fourth is the model averaging estimator provided

by Martins and Gabriel (2014) and discussed in section 4.4, denoted byMG. Fifth and sixth are our ODR

estimators in equation (1) using tuning functions Λ1 and Λ2, respectively, denoted by ODRΛ1 and ODRΛ2

(which are consistent for all designs). Seventh and eighth are our simpler estimators in equation (4),

denoted by SODRΛ1 and SODRΛ2 (which are consistent for all designs, but asymptotically less effi cient

than ODR when both sets of moments are valid).

For each of the eight estimators, Tables 1 and 2 present simulation results of n = 100 observations,

and Tables 3 and 4 present simulation results of n = 500 observations. All tables are based on 2000

Monte Carlo simulations. The reported summary statistics on the estimated parameters are, respectively,

the bias (Bias), median error (MdE), root mean-squared error (RMSE), median absolute error (MAE),

and the standard deviation (SD). To check the quality of our limiting distribution, we also calculate the

estimated t-statistic α̂j − 1 divided by the estimated standard error of α̂j for j = 0, 1 in each simulation.
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We report skewness (Skew) and kurtosis (Kurt) of these t-statistics across simulations, and the frequency

(Freq) that these t-statistics are less than 2 in magnitude, corresponding to the frequency with which a

±2 estimated standard error confidence interval contains the true parameter value. Also, to check the

accuracy of the standard error estimates, we report the average of the estimated standard errors (SE),

and standard deviation of the estimated standard errors (SDSE), across the simulations. The last five

summary statistics are not reported for SODR, because we do not consider its limiting distribution due

to the random probability limit of Ŵg.

When both sets of instruments are valid, ODR estimates are almost as precise as GMMf , and when

either set of instruments is invalid, ODR estimates are more precise than inconsistent GMM estimators.

The SODR estimates are found to be less effi cient than ODR when both G and H models are valid (as

expected), but when one model is invalid, SODR is similar to ODR. In this application, the cost in

effi ciency of choosing the simpler SODR seems small10. Presumably the gains to ODR would have been

larger in a simulation design where the effi ciency of GMMf more greatly exceeded that of GMMg.

Despite the fact that MG is specifically designed for instrument selection in linear models, while our

ODR is a generic estimator for arbitrary moment based models, the finite sample performance of ODR is

close to, and in some cases slightly better than,MG, particularly when both models are correctly specified.

Our simulation results also show that the limiting distributions provide reasonably good approximations

to their finite sample counterparts, and these approximations improve substantially when going from the

sample size n = 100 to n = 500. In particular, the quality of ODR estimated standard errors and confidence

intervals is similar to that of the corresponding correctly specified GMM standard errors and confidence

intervals. This can be seen by comparing the SE and SD columns, and comparing how close Freq is to .95

in the ODR rows, relative to same comparisons in the correctly specified GMM rows. Indeed, at n = 500

almost all of the summary statistics of ODR become close to those of the most effi cient correctly specified

GMM in each block. One exception is ODRΛ2 when the model H is invalid. In this case, there were a few

large outlier ODRΛ2 estimates, resulting in substantial nonnormal skewness and kurtosis in the t-statistic

distribution. But other summary statistics are still similar to those of ODRΛ1 and correctly specified

10However, SODR incurs the additional cost of possibly not having a normal limiting distribution when both G and H are

correctly specified.
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Table 1. Simulation Results of α1 (n = 100)

Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

Both correct

GMMg 0.0008 0.0015 0.0006 0.0170 0.0247 0.0819 3.1153 0.9390 0.0236 0.0038

GMMh -0.0010 0.0010 0.0023 0.0302 0.0480 0.2350 2.8924 0.9520 0.0455 0.0138

GMMf 0.0012 0.0018 0.0005 0.0159 0.0222 0.0833 3.0008 0.9290 0.0202 0.0030

MG -0.0010 -0.0004 0.0008 0.0184 0.0288 0.1681 2.9945 0.9535 0.0268 0.0084

ODRΛ1 0.0004 0.0012 0.0006 0.0164 0.0255 0.0829 3.0406 0.9250 0.0214 0.0049

ODRΛ2
0.0006 0.0011 0.0005 0.0149 0.0232 0.1840 3.3537 0.9285 0.0210 0.0040

SODRΛ1
-0.0016 -0.0003 0.0012 0.0200 0.0348

SODRΛ2 -0.0011 -0.0003 0.0012 0.0201 0.0342

G correct

GMMg 0.0007 0.0022 0.0006 0.0169 0.0248 0.2852 3.2493 0.9380 0.0237 0.0046

GMMh 0.1991 0.1951 0.0413 0.1951 0.0408 0.3284 3.3054 0.0000 0.0348 0.0100

GMMf 0.0731 0.0725 0.0059 0.0725 0.0244 0.2104 3.1962 0.0540 0.0166 0.0023

MG 0.0372 0.0284 0.0038 0.0317 0.0487 0.8547 3.0249 0.5760 0.0201 0.0054

ODRΛ1
0.0229 0.0114 0.0038 0.0207 0.0570 1.4912 4.8689 0.7730 0.0230 0.0061

ODRΛ2
0.0247 0.0130 0.0038 0.0223 0.0563 1.3465 4.3800 0.7560 0.0229 0.0059

SODRΛ1 0.0229 0.0114 0.0038 0.0207 0.0570

SODRΛ2
0.0242 0.0122 0.0038 0.0223 0.0569

H correct

GMMg 0.1123 0.1121 0.0130 0.1121 0.0201 0.3521 3.4293 0.0000 0.0163 0.0025

GMMh 0.0003 0.0069 0.0025 0.0308 0.0498 0.6336 3.3317 0.9220 0.0465 0.0238

GMMf 0.0938 0.0939 0.0092 0.0939 0.0193 0.3582 3.3534 0.0015 0.0145 0.0021

MG 0.0009 0.0075 0.0025 0.0309 0.0499 0.6559 3.3722 0.9165 0.0462 0.0238

ODRΛ1
0.0025 0.0080 0.0024 0.0317 0.0494 1.2264 5.4509 0.8925 0.0449 0.0214

ODRΛ2 0.0047 0.0110 0.0024 0.0320 0.0489 1.5845 7.7317 0.8800 0.0437 0.0204

SODRΛ1
0.0003 0.0070 0.0025 0.0308 0.0499

SODRΛ2
0.0001 0.0073 0.0026 0.0311 0.0509
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Table 2. Simulation Results of α0 (n = 100)

Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

Both correct

GMMg -0.0038 -0.0048 0.0112 0.0687 0.1058 0.0005 3.1738 0.9415 0.1009 0.0089

GMMh -0.0024 -0.0090 0.0134 0.0757 0.1157 -0.0131 2.9788 0.9490 0.1115 0.0182

GMMf -0.0046 -0.0073 0.0113 0.0688 0.1063 0.0212 3.1124 0.9350 0.0981 0.0085

MG -0.0022 -0.0063 0.0115 0.0697 0.1071 0.0291 3.0642 0.9440 0.1022 0.0110

ODRΛ1 -0.0039 -0.0062 0.0113 0.0686 0.1063 0.0583 3.0524 0.9370 0.0989 0.0092

ODRΛ2
0.0001 -0.0017 0.0105 0.0687 0.1025 -0.0532 3.1744 0.9525 0.0990 0.0088

SODRΛ1
-0.0016 -0.0067 0.0120 0.0703 0.1097

SODRΛ2 0.0014 0.0023 0.0108 0.0707 0.1041

G correct

GMMg -0.0038 -0.0060 0.0112 0.0683 0.1060 -0.0390 3.1287 0.9395 0.1009 0.0108

GMMh -0.2005 -0.1977 0.0554 0.1977 0.1234 0.1485 3.0509 0.5750 0.1103 0.0179

GMMf -0.0744 -0.0737 0.0219 0.0999 0.1280 -0.0354 3.1266 0.7540 0.0867 0.0074

MG -0.0401 -0.0396 0.0140 0.0774 0.1115 -0.1154 3.1855 0.8885 0.0954 0.0109

ODRΛ1
-0.0258 -0.0198 0.0147 0.0722 0.1186 -0.2332 3.2476 0.9010 0.0996 0.0120

ODRΛ2
-0.0245 -0.0198 0.0136 0.0744 0.1139 -0.2004 3.0110 0.9065 0.0995 0.0114

SODRΛ1 -0.0258 -0.0198 0.0147 0.0722 0.1186

SODRΛ2
-0.0240 -0.0194 0.0136 0.0745 0.1142

H correct

GMMg -0.1151 -0.1166 0.0230 0.1198 0.0989 0.0139 2.8983 0.6735 0.0808 0.0069

GMMh -0.0028 -0.0088 0.0133 0.0722 0.1153 -0.2405 2.9748 0.9530 0.1123 0.0344

GMMf -0.0963 -0.0966 0.0203 0.1039 0.1050 -0.0085 2.9169 0.7095 0.0791 0.0068

MG -0.0035 -0.0094 0.0133 0.0720 0.1151 -0.2389 2.9660 0.9515 0.1120 0.0343

ODRΛ1
-0.0051 -0.0105 0.0131 0.0725 0.1146 -0.2535 2.9609 0.9475 0.1109 0.0320

ODRΛ2 -0.0084 -0.0187 0.0135 0.0753 0.1159 -0.1964 3.0290 0.9380 0.1095 0.0287

SODRΛ1
-0.0029 -0.0089 0.0133 0.0722 0.1153

SODRΛ2
-0.0038 -0.0144 0.0138 0.0760 0.1176
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Table 3. Simulation Results of α1 (n = 500)

Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

Both correct

GMMg -0.0001 0.0001 0.0001 0.0074 0.0108 0.0652 2.8494 0.9565 0.0108 0.0008

GMMh -0.0005 -0.0004 0.0004 0.0131 0.0199 0.0602 2.9137 0.9565 0.0200 0.0023

GMMf 0.0000 0.0001 0.0001 0.0066 0.0096 0.0227 2.7919 0.9495 0.0094 0.0006

MG -0.0004 -0.0007 0.0001 0.0081 0.0120 0.0009 2.7642 0.9525 0.0119 0.0024

ODRΛ1 -0.0001 0.0001 0.0001 0.0069 0.0106 0.0145 2.7364 0.9390 0.0097 0.0013

ODRΛ2
-0.0004 -0.0006 0.0001 0.0067 0.0109 0.1468 3.1553 0.9415 0.0097 0.0013

SODRΛ1
-0.0005 -0.0006 0.0002 0.0091 0.0142

SODRΛ2 -0.0007 -0.0004 0.0002 0.0089 0.0149

G correct

GMMg -0.0001 0.0002 0.0001 0.0073 0.0108 0.1479 2.8751 0.9560 0.0108 0.0009

GMMh 0.1990 0.1986 0.0399 0.1986 0.0177 0.1549 3.0003 0.0000 0.0155 0.0018

GMMf 0.0729 0.0728 0.0054 0.0728 0.0109 0.1287 3.0088 0.0000 0.0077 0.0005

MG 0.0001 0.0004 0.0001 0.0073 0.0110 0.3379 4.0679 0.9535 0.0108 0.0009

ODRΛ1
-0.0001 0.0002 0.0001 0.0073 0.0108 0.1480 2.8743 0.9560 0.0108 0.0009

ODRΛ2
0.0010 0.0010 0.0001 0.0076 0.0115 1.2373 10.9036 0.9425 0.0107 0.0009

SODRΛ1 -0.0001 0.0002 0.0001 0.0073 0.0108

SODRΛ2
0.0009 0.0009 0.0001 0.0076 0.0115

H correct

GMMg 0.1124 0.1125 0.0127 0.1125 0.0091 0.1833 2.9687 0.0000 0.0074 0.0005

GMMh -0.0004 0.0006 0.0004 0.0132 0.0201 0.3063 3.0314 0.9580 0.0201 0.0034

GMMf 0.0939 0.0937 0.0089 0.0937 0.0088 0.1908 3.0597 0.0000 0.0067 0.0004

MG -0.0004 0.0006 0.0004 0.0132 0.0201 0.3063 3.0314 0.9580 0.0201 0.0034

ODRΛ1
-0.0004 0.0006 0.0004 0.0132 0.0201 0.3063 3.0314 0.9580 0.0201 0.0034

ODRΛ2 0.0002 0.0018 0.0004 0.0131 0.0203 0.3885 3.1614 0.9475 0.0201 0.0035

SODRΛ1
-0.0004 0.0006 0.0004 0.0132 0.0201

SODRΛ2
0.0001 0.0017 0.0004 0.0131 0.0203
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Table 4. Simulation Results of α0 (n = 500)

Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

Both correct

GMMg -0.0010 -0.0002 0.0021 0.0315 0.0458 -0.1391 2.9732 0.9565 0.0459 0.0018

GMMh -0.0008 0.0005 0.0024 0.0328 0.0492 -0.1701 3.0631 0.9500 0.0491 0.0030

GMMf -0.0011 0.0000 0.0021 0.0311 0.0458 -0.1335 2.9799 0.9550 0.0454 0.0017

MG -0.0007 0.0004 0.0021 0.0311 0.0463 -0.1527 3.0340 0.9570 0.0462 0.0021

ODRΛ1 -0.0010 0.0000 0.0021 0.0310 0.0459 -0.1327 3.0063 0.9540 0.0455 0.0018

ODRΛ2
0.0009 -0.0005 0.0022 0.0315 0.0471 0.0061 2.9664 0.9445 0.0455 0.0019

SODRΛ1
-0.0005 0.0003 0.0022 0.0321 0.0468

SODRΛ2 0.0010 0.0003 0.0023 0.0334 0.0483

G correct

GMMg -0.0010 -0.0003 0.0021 0.0314 0.0458 -0.1566 2.9735 0.9570 0.0459 0.0021

GMMh -0.2000 -0.2000 0.0428 0.2000 0.0529 0.0663 3.1573 0.0225 0.0495 0.0033

GMMf -0.0732 -0.0731 0.0084 0.0739 0.0554 0.0501 2.9813 0.5400 0.0402 0.0014

MG -0.0012 -0.0004 0.0021 0.0314 0.0458 -0.1553 2.9705 0.9570 0.0458 0.0021

ODRΛ1
-0.0010 -0.0003 0.0021 0.0314 0.0458 -0.1563 2.9744 0.9570 0.0459 0.0021

ODRΛ2
-0.0020 -0.0011 0.0021 0.0315 0.0459 -0.1685 2.9918 0.9550 0.0457 0.0021

SODRΛ1 -0.0010 -0.0003 0.0021 0.0314 0.0458

SODRΛ2
-0.0020 -0.0011 0.0021 0.0315 0.0459

H correct

GMMg -0.1122 -0.1121 0.0146 0.1121 0.0448 -0.0037 3.0575 0.1945 0.0367 0.0013

GMMh -0.0007 -0.0007 0.0024 0.0329 0.0494 -0.2688 3.0914 0.9480 0.0492 0.0048

GMMf -0.0938 -0.0948 0.0111 0.0948 0.0481 -0.0661 2.9792 0.3445 0.0366 0.0013

MG -0.0007 -0.0007 0.0024 0.0329 0.0494 -0.2688 3.0914 0.9480 0.0492 0.0048

ODRΛ1
-0.0007 -0.0007 0.0024 0.0329 0.0494 -0.2688 3.0914 0.9480 0.0492 0.0048

ODRΛ2 -0.0011 -0.0038 0.0025 0.0340 0.0500 -0.1804 2.9318 0.9555 0.0491 0.0049

SODRΛ1
-0.0007 -0.0007 0.0024 0.0329 0.0494

SODRΛ2
-0.0011 -0.0037 0.0025 0.0340 0.0500
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GMM . This suggests a modest advantage of the exponential tuning function Λ1.

One should expect correctly specified GMM estimators to be more effi cient than ODR, and that is

indeed the case. But in many of the simulations, the loss in effi ciency from using ODR is very low. In

particular, when model G is invalid, so only the weaker instruments are valid, the precision of ODR is

almost identical to that of the effi cient GMMh. So, using our ODR, there is little loss in effi ciency from

not knowing which specification is correct. In summary, we conclude that our proposed ODR works well,

even at low sample sizes.

6 Empirical Application: Engel Curve Estimation

Here we empirically estimate the Engel curve example discussed in section 3.2. Y is the food budget

share, S is log real total consumption expenditures, and X is a vector of other covariates that serve

as controls11. The goal is estimation of the coeffi cient of S in a regression of Y on S and X. Total

consumption S is observed with measurement error, so instrumental variables estimation is used to correct

for the resulting endogeneity. The vector L consists of two candidate external instrumental variables, real

total income and real total income squared. Model G assumes these external instruments are valid. Model

H instead assumes that constructed instruments based on heteroscedasticity as described by Lewbel (2012)

and summarized in section 3.2 above are valid. Model F assumes both sets of instruments are valid.

The data consist of 854 households collected from the UK Family Expenditure Survey 1980-1982 as

studied by Banks, Blundell, and Lewbel (1997), Lewbel (2012), and Baum and Schaffer (2012). The sample

means are Y = 0.285 and S = 0.599, and the standard deviations are 0.106 for Y and 0.410 for S.

The parameter of interest is the coeffi cient of log real total expenditure αs. Table 5 summarizes

estimates of αs and of the constant term α0. GMMg0 is the estimate reported in Lewbel (2012) and Baum

and Schaffer (2012). GMMg is the GMM estimator using the moments in equation (8), which makes use

of the external instruments L.12 GMMh is the GMM estimator that uses the moments in equation (9),

11These covariates are a constant, age, spouse’s age, squared ages, seasonal dummies, and dummies for spouse working, gas

central heating, ownership of a washing machine, one car, and two cars.
12The estimates of GMMg0 and GMMg are not identical because we use the two external instruments income and income

squared, instead of just using income. There’s a similar small difference between GMMf and the models based on both sets

of moments reported in Lewbel (2012) and Baum and Schaffer (2012), for the same reason.
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which are heteroscedasticity based constructed instruments. GMMf is the GMM estimator that uses both

sets of instruments, and SODR and ODR are our new estimators given in equations (4) and (1) with the

tuning functions Λ1 and Λ2.

The estimated results show that the external instruments of model G are much stronger than the

constructed instruments of model H. This is not surprising since the constructed instruments are based

on higher moments of the data. This difference in strength can be seen in the standard errors of α̂s, which

are much lower in model G than in model H, and also in model GMMf which gives estimates much closer

to GMMg than GMMh.

The point estimates of GMMg and GMMh are substantially different, which could be due to having

one of these sets of instruments be invalid. However, this difference could also just be due to imprecision,

particularly of GMMh. This illustrates the usefulness of our ODR, which does not require resolving which

set of instruments is valid, or if both are valid.

Table 5. Engel Curve Estimates

GMMg0 GMMg GMMh GMMf SODRΛ1 ODRΛ1 SODRΛ2 ODRΛ2

α̂s -0.0859
(0.0198)

-0.0840
(0.0197)

-0.0521
(0.0546)

-0.0862
(0.0177)

-0.0812 -0.0862
(0.0192)

-0.0831 -0.0862
(0.0192)

α̂0 0.336
(0.0122)

0.335
(0.0120)

0.317
(0.0328)

0.337
(0.0109)

0.333 0.337
(0.0118)

0.335 0.337
(0.0118)

χ2 0.191 12.91 15.94

d.f. 1 11 13

p-value 0.662 0.299 0.252

Q̂ 0.0002 0.0014 0.0014

Ŵg, Ŵf , p 0.09, 0.004, 0.86 0.03, 0.000, 0.86

13

13Table 5 notes: We report coeffi cient estimates with associated standard errors in parentheses, except SODR. Also reported

is χ2, the Hansen (1982) test statistics for overidentified GMM, along with their degrees of freedom d.ḟ . and p-values. Q̂ is

the normalized minimand of the GMM estimators. The last row reports weights Ŵg, Ŵf , and gives p, which is the p-value of

the Wald statistic testing the null hypothesis that α̂g = α̂h. This p is used to construct τ = 1 − p in Ŵf in equation (5), as

explained in section 2.3.
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The estimated weight Ŵg is 0.09 with the tuning function Λ1 and 0.03 with Λ2, so SODR puts over

ten times as much weight on model G as on model H. However, in ODR the weight on model F , 1− Ŵf ,

is 0.996 with Λ1 and is one to three decimal places with Λ2. The very small difference in Ŵf between Λ1

and Λ2 is why both of the ODR estimates appear the same in Table 5 (they actually differ in the fourth

significant digit: -0.08617 vs. -0.08619 for α̂s).

The very high weight on model F strongly suggests that both models are likely to be correctly specified.

This therefore implies that the difference betweenGMMg andGMMh is likely due to imprecision ofGMMh

rather than misspecification of the constructed instruments in model H. Further evidence that both are

correctly specified is given by the chi-squared statistics in Table 5, which test validity of the moments

comprising each of theGMM estimates. This situation, where both models appear to be correctly specified,

is when we would expect ODR to perform better than SODR.

Lewbel (2012) observes that a virtue of the constructed instruments is that they are valid under very

different conditions than those required for validity of the external instruments, and suggests that they

therefore are useful for testing overidentification. Our proposed ODR estimator makes further use of these

instruments, by delivering estimates that are consistent if either (or both) sets of instruments are valid.

7 Local Misspecification

Consider the case where model G or H is locally misspecified, with parameters in the data generating

process given by θg = θg0 + δgn
−s or θh = θh0 + δhn

−s for constants δg and δh, and s > 0. By construction,

s = 0 is equivalent to global misspecification and s = ∞ is equivalent to correct specification, which are

the cases we have already considered in our previous theorems. Pitman (1949) drift corresponds to the

case of s = 1/2. This model is used by, e.g. Newey and West (1987), Bera and Yoon (1993) and Newey

and McFadden (1994) to develop local power analyses. Here we summarize the asymptotic properties of

our ODR estimator under local misspecification, with formal results provided in Lemma 2 and Theorems

3 and 4 in the Supplemental Appendix.

The asymptotic distribution of
√
n(α̂ − α0) depends on the value of s. We show in the Supplemental

Appendix that the influence function of our ODR estimator consists of three terms. The first is a weighted

sum of three different well behaved influence functions, the second converges to zero in probability for
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all s ≥ 0, and the third either converges to a constant or diverges depending on s (and sometimes τ) as

discussed below.14

First suppose model G is locally misspecified with s > 1/2. Then nQ̃g
(
α̂g, β̂g

)
→d χ2

kg
(0), which is the

same limit as when G is correctly specified, and similarly for H. As a result, in this case the SODR and

ODR estimators have the same
√
n consistent, asymptotically normal limiting distribution as they have

when G is correctly specified, and similarly for H. Note this means that instead of requiring that either

G or H (or both) be correctly specified, it is suffi cient to assume that either G or H (or both) are locally

misspecified with s > 1/2, noting that correct specification is the special case of s =∞.

If model G is locally misspecified with s < 1/2, then nQ̃g
(
α̂g, β̂g

)
diverges, and the SODR has the

same
√
n consistent, asymptotically normal limiting distribution as when G is globally misspecified. The

ODR will also have the same limiting distribution as when G is globally misspecified, as long as the tuning

parameter τ has τ > s + 0.5. This then guarantees that model G will asymptotically have zero weight.

Since these cases are equivalent asymptotically to G being globally misspecified, we need to assume that H

is either correctly specified, or locally misspecified with its s > 1/2. This generalizes our original theorems

that simply assumed either G or H is correctly specified.

Finally, suppose model G is locally misspecified with s = 1/2. Then nQ̃g converges to a noncentral

chi-squared distribution. Specifically, nQ̃g
(
α̂g, β̂g

)
→d χ2

kg
(ω′gΩgωg), where the object in parentheses is

the noncentrality parameter and the formula for ωg is given in the Supplemental Appendix. In this case

the GMM estimator of model G is consistent but not
√
n consistent, as established in, e.g., Newey and

McFadden (1994). Here nQ̃g is still bounded in probability, and if H is correctly specified (or locally

misspecified with its s > 1/2), then nQ̃f is also bounded in probability. Thus, ODR will asymptotically

put weight on model F , which then is consistent but may not be
√
n consistent. As a result, in this knife

edge case, ODR will be consistent, but not
√
n consistent, since

√
n(α̂−α0) will be asymptotically normal

but is not centered at zero.

These results can be summarized as follows. If both G and H are locally misspecified, each with s > 1/2

(including the special case where one or both is correctly specified, corresponding to s = ∞), then ODR
14 In the Supplemental Appendix, we also explicitly derive the implications of these results for the limiting distribution of the

ODR estimator when one model is correctly specified and the other is locally misspecified for varying values of s. The results

summarized in this subsection are all either directly verified in the Supplemental Appendix, or are immediate extentions.
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will have the same limiting distribution as effi cient GMM with both G and H correctly specified. If just

G is locally misspecified with s > 1/2 (again including as a special case having G be correctly specified by

s = ∞), and H is either misspecified or locally misspecified with s < 1/2, then (assuming τ > s + 0.5)

ODR will have the same limiting distribution as effi cient GMM based just on model G (and vice versa,

exchanging the roles of G and H). Equivalently we can say that our earlier Theorem 2 still holds, replacing

"correctly specified model" with "locally misspecified model having any s > 1/2, including s = ∞" and

replacing "incorrectly specified model" with "locally misspecified model having any s < 1/2, including

s = 0."

We conclude this section with some additional Monte Carlo results (reported in Tables 6 and 7 in the

Supplemental Appendix), which we find support these conclusions. We use the same designs and estimators

as in section 5 but with a drift parameter s for the locally misspecified cases. Since ODR performed better

with the tuning function Λ1 in section 5, to save space we only report ODRΛ1 , along with GMMg, GMMh,

and GMMf . In these tables, model H is either globally misspecified, or locally misspecified with s equal

to 0.25, 0.50, or 0.75. In Tables 6-1 and 6-2 model G is correctly specified, while in Tables 7-1 and 7-2, G

is locally misspecified with s = 0.75.

The finite sample results in these tables largely accord with asymptotic theory, with one interesting

difference. When model H is locally misspecified with s = 0.5 (Pitman drift) our ODR should be compa-

rable to GMMf , but actually performs slightly better than GMMf . This is due to our use of the Wald

statistic to select τ . With s = 0.5, the Wald statistic over-rejects the null, making τ large and therefore

pulling the ODR estimator towards to GMMg, which is better behaved than GMMf with Pitman drift.

8 Extension: Multiple Robustness

It is possible to construct triply and higher multiply robust estimators that are similar to SODR.

Suppose we have a third model, called model L, with GMM objective function Q̃l(α, λ). The GMM

estimator of model L is {α̂l, λ̂l} = arg min{α,λ}∈Θα×Θλ Q̃
l(α, λ). A possible formula for triply robust
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estimation of α would then be the weighted average

α̃∗ =
Q̂g(α̂g, β̂g)Q̂

h(α̂h, γ̂h)α̂l + Q̂l(α̂l, λ̂l)Q̂
h(α̂h, γ̂h)α̂g + Q̂l(α̂l, λ̂l)Q̂

g(α̂g, β̂g)α̂h

Q̂g(α̂g, β̂g)Q̂h(α̂h, γ̂h) + Q̂l(α̂l, λ̂l)Q̂h(α̂h, γ̂h) + Q̂l(α̂l, λ̂l)Q̂g(α̂g, β̂g)
(14)

=

α̂l
Q̂l(α̂l,λ̂l)

+
α̂g

Q̂g(α̂g ,β̂g)
+ α̂h

Q̂h(α̂h,γ̂h)

1

Q̂l(α̂l,λ̂l)
+ 1

Q̂g(α̂g ,β̂g)
+ 1

Q̂h(α̂h,γ̂h)

. (15)

In equation (14), the weight on α̂l is proportional to the product of objective functions for the other models,

Q̂gQ̂h, and similarly for the weights on α̂g and α̂h.

The above estimator is a simple extension of our SODR estimator because the SODR can be rewriten

as

α̃ =

α̂g

Q̂g(α̂g ,β̂g)
+ α̂h

Q̂h(α̂h,γ̂h)

1

Q̂g(α̂g ,β̂g)
+ 1

Q̂h(α̂h,γ̂h)

.

The logic of α̃∗ is the same as for the SODR estimator. For example, if model G is right and models L

and H are wrong, then only α̂g will get a nonzero weight asymptotically. Now suppose two but not all

three models are right, e.g., suppose models G and H are right and L is wrong. Then all the weights in

both the numerator and denominator of equation (14) go to zero. However, in this case we can divide

the numerator and denominator by Q̂g(α̂g, β̂g). Both Q̂g(α̂g, β̂g) and Q̂h(α̂h, γ̂h) converge to zero, but

nQ̂g(α̂g, β̂g)/nQ̂
h(α̂h, γ̂h) is finite and nonzero, so the limiting weights on α̂g and α̂h will be nonzero while

the limiting weight on α̂l will be zero, as desired. Consistency of this estimator would be obtained using

the same logic as for SODR.

9 Conclusions

In this paper, we provide a general technique for constructing doubly robust estimators. Our Over-

identified Doubly Robust (ODR) technique is a simple extension of the Generalized Method of Moments.

It takes the form of a weighted average of Hansen’s (1982) Generalized Method of Moments (GMM) based

estimators, and has similar associated root-n asymptotics. The proposed estimator appears to work well

in a small Monte Carlo study and in an empirical application to instrumental variables estimation, where

either one of two sets of instrument vectors might be invalid.

Our estimator requires that the candidate models be over-identified, having more moments than para-

meters. Ideally the number of moments should not greatly exceed the number of parameters, because GMM
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can suffer from well known finite sample biases when models have many more moments than parameters,

and particularly when some moments might be weak. In such cases, it may be desirable to let models G

and H equal just a subset of the available moments for each. Existing moment selection methods such as

Andrews and Lu (2001), Caner (2009), or Liao (2013) might be used prior to applying ODR, though this

then introduces pretest bias that ODR is intended to avoid. A potential subject for future work could be

more formally modifying ODR to deal with many moments and/or with weak moments.

Another potential extension for future work is to consider cases where β and γ are infinite dimensional,

e.g., where models G and H may contain unknown functions, perhaps replacing unconditional expectations

with conditional expectations as in Ai and Chen (2003). One diffi culty in such extensions is guaranteeing

that the model is still over-identified regarding α, or more precisely, ensuring that no solution to all the

moment conditions exists if the model is misspecified. Chen and Santos (2018) might be helpful regarding

this point. Another issue would be ensuring that the objective functions used in constructing weights

remain comparable and well behaved.
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This Supplemental Appendix consists of five parts. The first is a proof of Lemma 1 and of
Theorem 2, which give the asypmtotic properties of ODR described in Section 4.1-2. The second
part is a proof of Lemma 2 and of Theorems 3 and 4, which provide asymptotic properties of ODR
when one of models is locally misspecified, as summarized in Section 7. The third part a derivation
of the influence functions η̂fi , η̂

g
i , and η̂

h
i used in Theorem 2. The fourth part provides two additional

examples of applying our ODR estimator. The fifth part is Tables of Monte Carlo estimates relating
to local misspecification, as summarized in section 7.

Appendix I: Proof of Lemma 1 and Theorem 2

To avoid confusion, we collect our notation here. The sample and population moments are

ĝ(α, β) ≡ 1

n

n∑
i=1

G(Zi, α, β), ĥ(α, γ) ≡ 1

n

n∑
i=1

H(Zi, α, γ), f̂(α, β, γ) ≡ 1

n

n∑
i=1

F (Zi, α, β, γ),

g0(α, β) ≡ E{G(Z, α, β)}, h0(α, γ) ≡ E{H(Z, α, γ)}, f0(α, β, γ) ≡ E{F (Z, α, β, γ)}.

The true and pseudo-true parameters are (θj = θj0 if the model is correct, j = g, h, f)

θg0 ≡ {α0, β0}, θh0 ≡ {α0, γ0}, θf0 ≡ {α0, β0, γ0}, θg ≡ {αg, βg}, θh ≡ {αh, γh}, θf ≡ {αf , βf , γf},
cg ≡ g0(θg) 6= 0 if θg 6= θg0, ch ≡ h0(θh) 6= 0 if θh 6= θh0 , cf ≡ f0(θf ) 6= 0 if θf 6= θf0 .

With Ω̂g →p Ωg, Ω̂h →p Ωh and Ω̂f →p Ωf , we define GMM estimators corresponding to each model
as follows;

{α̂g, β̂g} minimizes Q̃g(α, β) ≡ ĝ(α, β)
′
Ω̂gĝ(α, β), {α̂h, γ̂h} minimizes Q̃h(α, γ) ≡ ĥ(α, γ)′Ω̂hĥ(α, γ),

{α̂f , β̂f , γ̂f} minimizes Q̃f (α, β, γ) ≡ f̂(α, β, γ)′Ω̂f f̂(α, β, γ);

{αg, βg} minimizes Q̃g
0(α, β) ≡ g0(α, β)′Ωgg0(α, β), {αh, γh} minimizes Q̃h

0(α, γ) ≡ h0(α, γ)′Ωhh0(α, γ)

{αf , βf , γf} minimizes Q̃f
0(α, β, γ) ≡ f0(α, β, γ)′Ωff0(α, β, γ).

The weight functions of the ODR estimator are, for 0 < τ < 1,

Ŵg ≡
Q̂g(α̂g, β̂g)

Q̂g(α̂g, β̂g) + Q̂h(α̂h, γ̂h)
and Ŵf ≡ 1− 1

nτ Q̂f (α̂f , β̂f , γ̂f ) + 1
;

Q̂g(α, β) ≡ Q̃g(α, β)

kg
, Q̂h(α, γ) ≡ Q̃h(α, γ)

kh
, Q̂f (α, β, γ) ≡ Q̃f (α, β, γ)

kf
;
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where kg is the degrees of freedom of the chi-squared statistic that nQ̃g converges to if the G model
is true. That is the integer kg is the number of moments in G (≡ k̃g) minus the number of elements
in α and β (≡ k∗g) which is positive as discussed earlier. For notational simplicity, let Q̂

g, Q̂h, and
Q̂f denote Q̂g(α̂g, β̂g), Q̂

h(α̂h, γ̂h), and Q̂f (α̂f , β̂f , γ̂f ), respectively. The population version of Q̂
corresponding to each model is

Qg
0 ≡

c
′
gΩgcg

kg
, Qh

0 ≡
c
′
hΩhch
kh

, Qf
0 ≡

c
′
fΩfcf

kf
.

If the model is correctly specified, then Qj
0 = 0, j = g, h, f .

Our proposed ODR estimator is a weighted average of α̂g, α̂h, and α̂f , taking the form

α̂ = ŴfŴgα̂h + Ŵf

(
1− Ŵg

)
α̂g + (1− Ŵf )α̂f (1)

Proof of Lemma 1.
To obtain the probability limits of Ŵg and Ŵf , first we consider without loss of generality

the probability limit of Q̂g when model G is correctly specified, and when it’s misspecified. The
asymptotics for Q̂h and Q̂f are obtained following the same logic. After these derivations, we then
obtain the probability limits of Ŵg and Ŵf based on Q̂g, Q̂h and Q̂f . First we have

nQ̂g = {Ω̂1/2
g

√
nĝ(θ̂g)}′{Ω̂1/2

g

√
nĝ(θ̂g)} 1

kg
. (2)

From the first order condition for θ̂g minimizing Q̃g(θ), we have

√
n∇θĝ(θ̂g) · Ω̂gĝ(θ̂g) = 0.

Taylor-expanding the last term ĝ(θ̂g) around θg gives

0 =
√
n∇θĝ(θ̂g) · Ω̂g{ĝ(θg) +∇θ′ ĝ(θ

g
)(θ̂g − θg)}

= ∇θĝ(θ̂g) · Ω̂g

√
nĝ(θg) +∇θĝ(θ̂g) · Ω̂g∇θ′ ĝ(θ

g
)
√
n(θ̂g − θg)

where θ
g
is a mean value between θg and θ̂g. Note that if the model is correctly specified, θg = θg0.

This gives

√
n(θ̂g − θg) = −(Ĥg)−1∇θĝ(θ̂g) · Ω̂g

√
nĝ(θg) where Ĥg ≡ ∇θĝ(θ̂g)Ω̂g∇θ′ ĝ(θ

g
). (3)

Case i). Suppose that G is correctly specified. By Assumption A1, A2, A3, A5, and A6, the
conditions of Theorem 2.1 of in Newey and McFadden (1994) (uniqueness, compactness, continuity,
and uniform convergence) hold for GMM estimation of model G, so that θ̂g →p θg0. For Ω̂

1/2
g
√
nĝ(θ̂g)

in equation (2), expanding ĝ around θg0, we have

Ω̂1/2
g

√
nĝ(θ̂g) = Ω̂1/2

g

√
nĝ(θg0) + Ω̂1/2

g ∇θ′ ĝ(θ
g
)
√
n(θ̂g − θg0)

2



where θ
g
is a mean value between θg0 and θ̂

g. Plug equation (3) with θg replaced by θg0 into this
equation to get

Ω̂1/2
g

√
nĝ(θ̂g) = Ω̂1/2

g

√
nĝ(θg0)− Ω̂1/2

g ∇θ′ ĝ(θ
g
)(Ĥg)−1∇θĝ(θ̂g)Ω̂g

√
nĝ(θg0)

= {Ik̃g − Ω̂1/2
g ∇θ′ ĝ(θ

g
)(Ĥg)−1∇θĝ(θ̂g)Ω̂1/2

g } · Ω̂1/2
g

√
nĝ(θg0) = Π̂∗gΩ̂

1/2
g

√
nĝ(θg0), (4)

where Π̂∗g ≡ Ik̃g − Ω̂1/2
g ∇θ′ ĝ(θ

g
)(Ĥg)−1∇θĝ(θ̂g)Ω̂1/2

g

and Ik̃g is the k̃g × k̃g identity matrix and k̃g is the number of moments in the model G.
By Assumption A10 and the Lindberg-Levy CLT,

√
nĝ(θg0)→d N(0,Σg) whereΣg = E{G(Z, θg0)G(Z, θg0)′},

and with Ω−1
g = Σg, Ω̂

1/2
g
√
nĝ(θg0) →d N(0, Ik̃g). By Assumption A7, A11, and the consistency of

θ̂g for θg0, ∇θĝ(θ
g
) →p ∇θg0(θg0), ∇θĝ(θ̂g) →p ∇θg0(θg0), and Ĥg →p Hg which is non-singular by

Assumption A8. Then, we have

Π̂∗g →p Π∗g ≡ Ik̃g − Ω1/2
g ∇θ′g0(θg0)(Hg)−1∇θg0(θg0)Ω1/2

g ,

where Π̂∗g is a k̃g× k̃g symmetric matrix that is idempotent with trace(Πg) = kg, kg ≡ k̃g−k∗g where
k∗g is the number of parameters in the model G. Therefore,

nQ̂g = {Ω̂1/2
g

√
nĝ(θg0)}′Π̂∗g{Ω̂1/2

g

√
nĝ(θg0)}/kg →d χ2

kg/kg.

Case ii). Suppose that G is misspecified. Under Assumption A1, A3, A4, A5, and A6, θ̂g →p

θg 6= θg0 by Lemma 1 of Hall (2000). For Ω̂
1/2
g
√
nĝ(θ̂g) in (2), Taylor-expand ĝ around θg to get, with

cg ≡ g0(θg)

Ω̂1/2
g

√
nĝ(θ̂g) = Ω̂1/2

g

√
nĝ(θg) + Ω̂1/2

g ∇θ′ ĝ(θ
g
)
√
n(θ̂g − θg)

= Ω̂1/2
g

√
n{ĝ(θg)− cg}+ Ω̂1/2

g ∇θ′ ĝ(θ
g
)
√
n(θ̂g − θg) + Ω̂1/2

g

√
ncg. (5)

Call (3) adding and subtracting cg to have

√
n(θ̂g − θg) = −(Ĥg)−1∇θĝ(θ̂g) · Ω̂g

√
n{ĝ(θg)− cg}+ (Ĥg)−1∇θĝ(θ̂g) · Ω̂g

√
ncg. (6)

Applying the vectorization part in Hall and Inoue (2003, p.367) and using the population first-order
condition ∇θg0(θg)Ωgg0(θg) = 0, rewrite the last term other than (Ĥg)−1 in (6) as

√
n∇θĝ(θ̂g) · Ω̂gcg =
√
n{∇θĝ(θ̂g)−∇θĝ(θg)}Ω̂gcg +

√
n{∇θĝ(θg)−∇θg0(θg)}Ω̂gcg +∇θg0(θg)

√
n(Ω̂g − Ωg)cg

= cgM̃
g
√
n(θ̂g − θg) +

√
n{∇θĝ(θg)−∇θg0(θg)}Ω̂gcg +∇θg0(θg)

√
n(Ω̂g − Ωg)cg, (7)

for some symmetric k∗g × k∗g matrix M̃ g involving Ω̂g and the second-order derivative of g(·) that is
bounded in probability by Assumption A14. Plugging (7) into (6) and solving for

√
n(θ̂g− θg) gives

√
n(θ̂g − θg) = [Ĥg − cgM̃ g]−1Γ̂g, (8)

where Γ̂g ≡ ∇θĝ(θ̂g) · Ω̂g

√
n{ĝ(θg)− cg}

+
√
n{∇θĝ(θg)−∇θg0(θg)}Ω̂gcg +∇θg0(θg)

√
n(Ω̂g − Ωg)cg.
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Under Assumption A13,
√
n{∇θĝ(θg) − ∇θg0(θg)} is asymptotically normal with mean zero

by the Lindberg-Levy CLT, so it is bounded in probability. And
√
n(Ω̂g − Ωg) is also bounded

in probability by Assumption A12. Under Assumption A7, A10, A11, A14, and the consistency
of θ̂g for θg,

√
n{ĝ(θg) − cg} →d N(0,Σg) where Σg = V ar [G(Z, αg, βg)], ∇θĝ(θ

g
) →p ∇θg0(θg),

∇θĝ(θ̂g) →p ∇θg0(θg), Ω̂g →p Ωg, and Ĥg − cgM̃ g converges to its probability limit which is non-
singular by Assumption A15. Thus, the first two terms in (5) are bounded in probability. However,
the third term in (5) diverges at the rate

√
n (= Op(n

1/2)), and consequently, nQ̂g diverges at the
rate n as n→∞.

In short, the asymptotics of nQ̂g is summarized as follows:

Case i) G is correctly specified =⇒ nQ̂g →d χ2
kg
/kg as n→∞;

Case ii) G is misspecified =⇒ nQ̂g diverges as n→∞.

In the following, we investigate the probability limits of Ŵg and Ŵf , using these results.

Case 1). Suppose both g0(α0, β0) = 0 and h0(α0, γ0) = 0. Then, f0(α0, β0, γ0) = 0. By A1, A2,
A3, A5, and A6, {α̂g, β̂g} →p {α0, β0}, {α̂h, γ̂h} →p {α0, γ0}, and {α̂f , β̂f , γ̂f} →p {α0, β0, γ0}, so
Q̂g →p 0, Q̂h →p 0, and Q̂f →p 0. For nτ Q̂f , following the same derivation in (4), we have

nτ Q̂f = nτ f̂(α̂f , β̂f , γ̂f )
′Ω̂f f̂(α̂f , β̂f , γ̂f )

1

kf

= nτ−1
{

Π̂f Ω̂
1/2
f

√
nf̂(θf0 )

}′ {
Π̂f Ω̂

1/2
f

√
nf̂(θf0 )

} 1

kf
= nτ−1χ̂2

kf

1

kf
,

where Π̂f ≡ Ik̃f−Ω̂
1/2
f ∇θ′ f̂(θ

f
)(Ĥf )−1∇θf̂(θ̂f )Ω̂

1/2
f and χ̂2

kf
≡ {Π̂f Ω̂

1/2
f

√
nf̂(θf0 )}′{Π̂f Ω̂

1/2
f

√
nf̂(θf0 )}.

Following the same steps as in Case i), we have χ̂2
kf
→d χ2

kf
which is bounded in probability, and

consequently, nτ Q̂f →p 0 for τ < 1, and

Ŵf = 1− 1

nτ Q̂f + 1
= 1− 1

nτ−1nQ̂f + 1
→p 0.

As for Ŵg, due to nQ̂g(α̂g, β̂g)→d χ
2
kg
/kg and nQ̂h(α̂h, γ̂h)→d χ

2
kh
/kh, Ŵg = nQ̂g(α̂g, β̂g)/{nQ̂g(α̂g, β̂g)+

nQ̂h(α̂h, γ̂h)} converges to a ratio of possibly dependent random variables, which lies between zero
and one with probability one. We do not need the limiting distribution of Ŵg

1, as it is enough to
have Ŵg bounded in probability to ensure ŴfŴg →p 0 when Ŵf →p 0.

Case 2). Suppose g0(α0, β0) = 0 but h0(α0, γ0) 6= 0. Then {α̂g, β̂g} →p {α0, β0}, {α̂h, γ̂h} →p

{αh, γh}, and {α̂f , β̂f , γ̂f} →p {αf , βf , γf}. By the continuous mapping theorem and uniform con-
vergence of Q̂g and Q̂h, we have Q̂g →p Qg

0 = c
′
gΩgcg/kg = 0, Q̂h →p Qh

0 = c
′
hΩhch/kh > 0, and

Q̂f →p Qf
0 = c

′
fΩfcf/kf > 0. From Case ii), nQ̂h diverges as n → ∞ while nQ̂g is bounded in

probability, and thus Ŵg = nQ̂g/(nQ̂g+nQ̂h)→p 0. As for Ŵf , due to Q̂f →p Qf
0 = c

′
fΩfcf/kf > 0,

we have
Ŵf = 1− 1

nτ Q̂f + 1
= 1− 1

nτ−1nQ̂f + 1
→p 1

1If Q̂g and Q̂f happen to be independent, then Ŵg would be a ratio of independent Chi-squareds and so converges
to a beta distribution with shape parameters kg/2 and kk/2. But there is no reason to impose that these distributions
be independent.
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and ŴfŴg →p 0.

Case 3). Suppose now g0(α0, β0) 6= 0 but h0(α0, γ0) = 0. Then {α̂g, β̂g} →p {αg, βg}, {α̂h, γ̂h} →p

{α0, γ0}, and {α̂f , β̂f , γ̂f} →p {αf , βf , γf}. So Q̂g →p Qg
0 = c

′
gΩgcg/kg > 0, Q̂h →p Qh

0 =

c
′
hΩhch/kh = 0, and Q̂f →p Qf

0 = c
′
fΩfcf/kf > 0. Following the same argument as in Case 2),

Ŵg →p 1 and Ŵf →p 1. In short, the probability limits of Ŵf and ŴgŴf are categorized as follows:

Case 1) Both G and H are correctly specified =⇒ Ŵf →p 0 and ŴfŴg →p 0;

Case 2) G is correctly specified, but H is not =⇒ Ŵf →p 1 and ŴfŴg →p 0;

Case 3) H is correctly specified, but G is not =⇒ Ŵf →p 1 and ŴfŴfg →p 1.

Q.E.D.

Proof of Theorem 2.
Recall equation (1) and rewrite it as

α̂ = α0 + ŴfŴg(α̂h − α0) + Ŵf

(
1− Ŵg

)
(α̂g − α0) + (1− Ŵf )(α̂f − α0).

From this, we have

√
n(α̂− α0) = ŴfŴg

√
n(α̂h − α0) + Ŵf

(
1− Ŵg

)√
n(α̂g − α0) + (1− Ŵf )

√
n(α̂f − α0)

= ŴfŴg

√
n(α̂h − αh) + Ŵf

(
1− Ŵg

)√
n(α̂g − αg) + (1− Ŵf )

√
n(α̂f − αf ) (9)

+ ŴfŴg

√
n(αh − α0) + Ŵf

(
1− Ŵg

)√
n(αg − α0) + (1− Ŵf )

√
n(αf − α0).

Now we show the asymptotic normality of α̂ and the form of Ṽ depending on which model is
correct.

Case 1). Suppose G and H are both correct. Then, because of αg = αh = αf = α0, αg,
αh, αf in the first line of (9) are replaced with α0, and the second line disappears. Follow-
ing the same argument as in Theorem 3.4 of Newey and McFadden, under Assumption A7, A9,
A10 and A11, the central limit theorem yields n−1/2

∑
i

G(Zi, α0, β0) →d N(0,Σg) where Σg =

E{G(Z, α0, β0)G(Z, α0, β0)′}, and, along with ĝ(α̂, β̂g)→p g0(θg0) = 0 and ∇αĝ(α̂, β̂g)→p ∇αg0(θg0),
we can establish asymptotic normality of

√
n(α̂g − α0). Analogously, along with the consistency

of (α̂h, β̂h) and (α̂f , β̂f , γ̂f ), the asymptotic normality of
√
n(α̂h − α0) and

√
n(α̂f − α0) are estab-

lished. Therefore, by Lemma 1 on Ŵf →p 0 and ŴgŴf →p 0, and boundedness of
√
n(α̂g−α0) and√

n(α̂h−α0) in probability, the asymptotic normality of
√
n(α̂f −α0), and the continuous mapping

theorem, we have √
n(α̂− α0)→d N(0, Ṽ f ).

By Assumption A8,

1

n

∑
i

η̂fi η̂
f ′
i →p Ṽ f ≡ E(ηfηf ′) where

√
n(α̂f − α0) =

1√
n

∑
i

η̂fi ;

η̂fi is the influence function of α̂f (the details of η̂
f
i are given in (23) below), making Ṽ

f = Ṽ .
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Case 2). Suppose G is correct, but H is not (αh − α0 ≡ δh 6= 0). In this case, F is also
misspecified (αf − α0 ≡ δf 6= 0). (9) can be rewritten as

√
n(α̂− α0) = ŴfŴg

√
n(α̂h − αh) + Ŵf

(
1− Ŵg

)√
n(α̂g − α0) + (1− Ŵf )

√
n(α̂f − αf )

+ ŴfŴg

√
nδh + (1− Ŵf )

√
nδf . (10)

Note that, in this case, (α̂g, β̂g) →p (α0, β0), while (α̂h, γ̂h) →p (αh, γh) and (α̂f , β̂f , γ̂f ) →p

(αf , βf , γf ). Following the same argument of Case 1), we have the asymptotic normality of
√
n(α̂g−

α0). Call (24) below replacing g with h to have
√
n(α̂h − αh) = Â−1

h ∇αĥ(θ̂h)Ω̂∗h
√
nĥ(θh),

where Âh ≡ ∇αĥ(θ̂h)Ω̂∗h∇α′ĥ(θ
h
), Ω̂∗h ≡ Ω̂

1/2′
h Π̂hΩ̂

1/2
h ,

Π̂h ≡ [Ik̃h − Ω̂
1/2
h ∇γ′ĥ(θ

h
){∇γĥ(θ̂h)Ω̂h∇γ′ĥ(θ

h
)}−1∇γĥ(θ̂h)Ω̂

1/2′
h ].

Then, adding and subtracting ch (≡ h0(θh)) yields
√
n(α̂h − αh) = Â−1

h ∇αĥ(θ̂h)Ω̂∗h
√
n{ĥ(θh)− ch}+ Â−1

h ∇αĥ(θ̂h)Ω̂∗h
√
nch. (11)

Following the same derivation as in Case ii) of Lemma 1 and using the population first-order
condition ∇αh0(θh)Ω∗hh0(θh) = 0, we can rewrite the last term other than Â−1

h in (11) as
√
n∇αĥ(θ̂h)Ω̂∗hch = (12)

= chM̂
∗h√n(α̂h − αh) +

√
n{∇αĥ(θh)−∇αh0(θh)}Ω̂∗hch +∇αh0(θh)

√
n(Ω̂∗h − Ω∗h)ch,

for some symmetric k∗h × k∗h matrix M̂∗h involving Ω̂∗h and the second-order derivative of h(·) wrt
α that is bounded in probability by Assumption A14. Plugging (12) into (11) and solving for√
n(α̂h − αh) gives

√
n(α̂h − αh) = [Âh − chM̂∗h]−1Γ̂h, (13)

where Γ̂h ≡ ∇αĥ(θ̂h)Ω̂∗h
√
n{ĥ(θh)− ch}

+
√
n{∇αĥ(θh)−∇αh0(θh)}Ω̂∗hch +∇αh0(θh)

√
n(Ω̂∗h − Ω∗h)ch.

Following the same logic as in Case ii) of Lemma 1,
√
n(α̂h − αh) is bounded in probability

and the same argument holds for
√
n(α̂f − αf ), too. In the second line of (10), ŴfŴg

√
n =(

1− 1
Op(nτ )+1

)
Op(1)

Op(1)+Op(n)
O(
√
n) and (1 − Ŵf )

√
n = 1

Op(nτ )+1
O(
√
n), and thus for τ > 1/2, the

second line disappears as n → ∞. By Lemma 1 on Ŵf →p 1 and ŴgŴf →p 0, boundedness of√
n(α̂h − αh) and

√
n(α̂f − αf ) in probability, the asymptotic normality of

√
n(α̂g − α0) and the

continuous mapping theorem, we have
√
n(α̂− α0)→d N(0, Ṽ g). By Assumption A8, we get

1

n

∑
i

η̂gi η̂
g′
i →p Ṽ g ≡ E(ηgηg′) where

√
n(α̂g − α0) =

1√
n

∑
i

η̂gi ;

η̂gi is the influence function of α̂g , making Ṽ
g = Ṽ .

Case 3). Suppose H is correct, but G is not (=⇒ αg − α0 ≡ δg 6= 0). Then the same argument
as in Case 2) applies, replacing Ŵg with 1 − Ŵg, and switching the roles of β and γ and the roles
of g and h. Q.E.D.
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Appendix II: Proof of Lemma 2 and Theorems 3 and 4

Let the model G be “locally misspecified”when the parameter in the data generating process
takes the form θg = θg0 +δgn

−s for a constant δg and s > 0, while θg0 satisfies E{G(Z, θg0)} = 0 due to
Assumption A3. Analogously, let the model H be “locally misspecified”when the parameter in the
data generating process is θh = θh0 + δhn

−s for a constant δh with E{H(Z, θh0 )} = 0. When s = 1/2,
δgn

−s is ‘Pitman drift’as in Pitman (1949), Newey and West (1987), Bera and Yoon (1993) and
Newey and McFadden (1994). When model G or H is locally misspecified, we have, respectively,

g0(θg) ≡ g0(θg0) +∇θ′g0(θ̃g)δgn
−s = ∇θ′g0(θ̃g)δgn

−s with ωg ≡ ∇θ′g0(θ̃g)δg,

h0(θh) ≡ h0(θh0 ) +∇θ′h0(θ̃h)δhn
−s = ∇θ′h0(θ̃h)δhn

−s with ωh ≡ ∇θ′h0(θ̃g)δh,

θ̃g is a mean value between θg and θg0, and θ̃
h is a mean value between θh and θh0 .

Before presenting the detailed proofs, we summarize here our main findings when one of the
models is locally misspecified but another is correctly specified. Suppose that model H is correctly
specified and model G is locally misspecified, with θg = θg0 + δgn

−s. This local misspecification
does not affect the consistency of our estimator α̂, because the local misspecification reduces to
the correct specification as n → ∞ and the weights Ŵg and ŴgŴf still have finite probability
limits under the local misspecification. As for asymptotic distribution, when s > 0.5, the limiting
distribution of

√
n(α̂−α0) is the same as when both models are correct, because the drift approaches

0 suffi ciently quickly. Second, when s = 0.5, α̂ is consistent but not
√
n-consistent. Third, when

s < 0.5, if s + 0.5 < τ , then the asymptotic distribution of
√
n(α̂ − α0) is the same as if model

G was globally misspecified (and is still
√
n-consistent, because asymptotically all weight goes on

model H) .

Assumption A16: Either 1) model G is correct but model H is locally misspecified, or 2)
model H is correct but model G is locally misspecified.

Lemma 2: Let Assumption A1 and Assumptions A3 to A16 hold. For any τ with 0 < τ < 1,
Ŵf and ŴgŴf have finite probability limits.

Proof of Lemma 2.
Analogously to the proof of Lemma 1, first we consider the probability limit of Q̂g when the

model is locally misspecified. Then, the probability limits of Q̂h and Q̂f can be found following the
same logic. Next, we find the probability limits of Ŵg and Ŵf , based on those of Q̂g, Q̂h, and Q̂f .

Case iii). Suppose that G is locally misspecified (θg = θg0 + δgn
−s). Under Assumption A1, A2,

A3, A5, and A6, the corresponding GMM estimator is still consistent θ̂g →p θg0 by Theorem 9.1
of Newey and McFadden (1994). For Ω̂

1/2
g
√
nĝ(θ̂g) in (2), Taylor-expand ĝ around θg to get, with

g0(θg) ≡ ωgn
−s

Ω̂1/2
g

√
nĝ(θ̂g) = Ω̂1/2

g

√
nĝ(θg) + Ω̂1/2

g ∇θ′ ĝ(θ
g
)
√
n(θ̂g − θg)

= Ω̂1/2
g

√
n{ĝ(θg)− ωgn−s}+ Ω̂1/2

g ∇θ′ ĝ(θ
g
)
√
n(θ̂g − θg) + Ω̂1/2

g

√
nωgn

−s. (14)

Call (3) adding and subtracting ωgn−s to have

√
n(θ̂g − θg) = −(Ĥg)−1∇θĝ(θ̂g) · Ω̂g

√
n{ĝ(θg)− ωgn−s}+ (Ĥg)−1∇θĝ(θ̂g) · Ω̂g

√
nωgn

−s. (15)
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Following the same steps as in Case ii) of Lemma 1, we can rewrite the last term other than
(Ĥg)−1 in (15) as

∇θĝ(θ̂g)Ω̂g

√
nωgn

−s =
√
n{∇θĝ(θ̂g)−∇θĝ(θg)}Ω̂gωgn

−s +
√
n{∇θĝ(θg)−∇θg0(θg)}Ω̂gωgn

−s +∇θg0(θg)
√
n(Ω̂g − Ωg)ωgn

−s

= ωgn
−sM̂ g

√
n(θ̂g − θg) +

√
n{∇θĝ(θg)−∇θg0(θg)}Ω̂gωgn

−s +∇θg0(θg)
√
n(Ω̂g − Ωg)ωgn

−s. (16)

Plugging (16) into (15) and solving for
√
n(θ̂g − θg) gives

√
n(θ̂g − θg) = [Ĥg − ωgn−sM̂ g]−1Γ̂g,

where Γ̂g ≡ ∇θĝ(θ̂g) · Ω̂g

√
n{ĝ(θg)− ωgn−s}

+
√
n{∇θĝ(θg)−∇θg0(θg)}Ω̂gωgn

−s +∇θg0(θg)
√
n(Ω̂g − Ωg)ωgn

−s.

Analogously to Case ii) of Lemma 1,
√
n{∇θĝ(θg) − ∇θg0(θg)} and

√
n(Ω̂g − Ωg) are bounded in

probability. Given Ω̂g →p Ωg, the last two terms in Γ̂g converge to zero because ωgn−s −→ 0 as
n −→∞ for s > 0. Therefore,

√
n(θ̂g − θg) = Ĥg−1∇θĝ(θ̂g) · Ω̂g

√
n{ĝ(θg)− ωgn−s}+ op(1). (17)

By Assumption A7, A10, A11, and the consistency of θ̂g →p θ0,
√
n{ĝ(θg) − ωgn−s} →d N(0,Σg)

where Σg = V ar [G(Z, αg, βg)], ∇θĝ(θ
g
)→p ∇θg0(θg0), ∇θĝ(θ̂g)→p ∇θg0(θg0), and Ĥg →p Hg which

is non-singular by Assumption A8. Thus, the continuous mapping theorem yields the asymptotic
normality of

√
n(θ̂g − θg) with mean zero. Plugging (17) into (14) gives

Ω̂1/2
g

√
nĝ(θ̂g)

= {Ik̃g − Ω̂1/2
g ∇θ′ ĝ(θ

g
)(Ĥg)−1∇θĝ(θ̂g)Ω̂1/2

g } · Ω̂1/2
g

√
n{ĝ(θg)− ωgn−s}+ Ω̂1/2

g

√
nωgn

−s + op(1)

= Π̂∗gΩ̂
1/2
g

√
n{ĝ(θg)− ωgn−s}+ Ω̂1/2

g

√
nωgn

−s + op(1). (18)

Consequently, we can characterize the asymptotics of Ω̂1/2
g
√
nĝ(θ̂g) depending on s using Ω̂

1/2
g
√
nωgn

−s

in (18).
If s = 1/2, then Ω̂

1/2
g
√
nωgn

−s →p Ω
1/2
g ωg and Ω̂

1/2
g
√
nĝ(θ̂g) is asymptotically normal with mean

Ω
1/2
g ωg and unit variance. Hence,

nQ̂g = {Ω̂1/2
g

√
nĝ(θ̂g)}′Ω̂1/2

g

√
nĝ(θ̂g)→d χ2

kg(ω
′
gΩgωg)/kg;

χ2
kg

(ω′gΩgωg) is the noncentral chi-squared distribution with noncentrality parameter ω′gΩgωg. If

s > 1/2 in (18), the noncentrality parameter shrinks to zero, so that nQ̂g →d χ2
kg

(0)/kg as n→∞,
analogously to Case i) of Lemma 1. If s < 1/2 in (18), then Ω̂

1/2
g
√
nωgn

−s = Op(n
1/2−s) diverges as

n→∞, analogously to Case ii) of Lemma 1. In short,

Case iii) with s < 1/2 =⇒ nQ̂g diverges as n→∞;

Case iii) with s = 1/2 =⇒ nQ̂g →d χ2
kg

(ω′gΩgωg)/kg as n→∞;

Case iii) with s > 1/2 =⇒ nQ̂g →d χ2
kg

(0)/kg as n→∞.

Next, we investigate the probability limits of Ŵg and Ŵf based on those of Q̂g, Q̂h, and Q̂f , doing
analogously to what was done for Case iii).

8



Case 4). Suppose that model G is correct, but H is locally misspecified with θh = θh0 + δhn
−s.

In this case, F is also locally misspecified with θf = θf0 + δfn
−s for some δf .

Case 4-1). If s = 1/2, as shown in Case iii), nQ̂h →d χ2
kh

(ω′hΩhωh)/kh and
nQ̂f →d χ

2
kf

(ω′fΩfωf )/kf as n → ∞. Thus Ŵg = nQ̂g(α̂g, β̂g)/{nQ̂g(α̂g, β̂g) + nQ̂h(α̂h, γ̂h)} con-
verges to a distribution on (0, 1). For Ŵf , we have

Ŵf = 1− 1

nτ Q̂f + 1
= 1− 1

nτ−1nQ̂f + 1
→p 0,

because nQ̂f is bounded in probability, and nτ−1 →p 0. Thus, ŴgŴf →p 0.
Case 4-2). If s > 1/2, nQ̂h →d χ

2
kh
/kh, and nQ̂f →d χ

2
kf
/kf . Therefore, it is asymptotically the

same as Case 1) of Lemma 1.
Case 4-3). If s < 1/2, nQ̂h and nQ̂f are Op(n

2(1/2−s)), as each is a squared version of a term
analogous to (18). In this case, whereas Ŵg →p 0, convergence of Ŵf depends on the relationship
between τ and s. Because nτ Q̂f = O(nτ−1)Op(n

2(1/2−s)) = Op(n
τ−2s), when τ > 2s, nτ Q̂f diverges

to result in Ŵf →p 1 and ŴgŴf →p 0. When τ < 2s, nτ Q̂f →p 0, and consequently Ŵf →p 0 and
ŴfŴg →p 0. When τ = 2s, however, (18) shows that nτ Q̂f →p ω′fΩfωf because only the last term
of (18) matters, so that Ŵf →p W ∗

f ≡ 1− (ω′fΩfωf + 1)−1 and ŴgŴf →p 0.

Case 5). Suppose that model G is locally misspecified with θg = θg0 + δgn
−s, but model H is

correct. Then essentially the same arguments as in Case 4) apply.
Case 5-1). If s = 1/2, then nQ̂g →d χ

2
kg

(ω′gΩgωg)/kg and nQ̂f →d χ
2
kf

(ω′fΩfωf )/kf . Thus,

Ŵf →p 0 and ŴgŴf →p 0.
Case 5-2). If s > 1/2, then nQ̂g →d χ

2
kg
/kg, and nQ̂f →d χ

2
kf
/kf as n→∞, which is asymptot-

ically the same as Case 1) of Lemma 1.
Case 5-3). If s < 1/2, then since nQ̂g and nQ̂f diverge, Ŵg →p 1 but the asymptotics of Ŵf

depends on the relationship between τ and s. For τ > 2s, nτ−1nQ̂f diverges, and thus, Ŵf →p 1 and
ŴgŴf →p 1; for τ < 2s, Ŵf →p 0 and ŴgŴf →p 0. When τ = 2s, Ŵf →p W ∗

f and ŴgŴf →p W ∗
f

because Ŵg →p 1.
In sum, the probability limits of Ŵf and ŴgŴf are categorized as follows:

Case 4-1) and 4-2) with s ≥ 1/2, =⇒ Ŵf →p 0 and ŴgŴf →p 0;

Case 4-3) with s < 1/2 and 2s < τ =⇒ Ŵf →p 1 and ŴgŴf →p 0;

Case 4-3) with s < 1/2 and τ = 2s =⇒ Ŵf →p W ∗
f and ŴgŴf →p 0;

Case 4-3) with s < 1/2 and τ < 2s =⇒ Ŵf →p 0 and ŴgŴf →p 0;

Case 5-1) and 5-2) with s ≥ 1/2, =⇒ Ŵf →p 0 and ŴgŴf →p 0;

Case 5-3) with s < 1/2 and 2s < τ =⇒ Ŵf →p 1 and ŴgŴf →p 1;

Case 5-3) with s < 1/2 and τ = 2s =⇒ Ŵf →p W ∗
f and ŴgŴf →p W ∗

f ;

Case 5-3) with s < 1/2 and τ < 2s =⇒ Ŵf →p 0 and ŴgŴf →p 0.

Q.E.D.

Theorem 3: Under Assumptions A1 and A3 to A16, for α̂ given by equation (1), α̂→p α0.

Proof of Theorem 3.
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Case 4). Suppose that G is correct, but H is the locally misspecified with θh = θh0 + δhn
−s. By

Theorem 9.1 of in Newey and McFadden (1994), still {α̂g, β̂g} →p {α0, β0}, {α̂h, γ̂h} →p {α0, γ0}
and {α̂f , β̂f , γ̂f} →p {α0, β0, γ0}. By Lemma 2, if s ≥ 1/2, then Ŵf →p 0 and ŴgŴf →p 0, and
the consistency of α̂ in (1) follows from consistency of α̂f . If s < 1/2, the probability limits of Ŵf

and ŴgŴf depend on the relationship between τ and s. If s < 1/2 and τ < 2s, the limits are the
same as in the case with s ≥ 1/2 by Lemma 2, and thus, the same argument holds for α̂. If s < 1/2
and τ > 2s, by Lemma 2 Ŵf →p 1 and ŴgŴf →p 0 and the consistency of α̂ follows from the
consistency of α̂g. If s < 1/2 and τ = 2s, then by Lemma 2 Ŵf →p W ∗

f and ŴgŴf →p 0 and the
consistency of α̂ follows from the consistency of α̂g and α̂f , and α̂g − α̂f →p 0.
Case 5). Suppose that H is correct, but G is locally misspecified. Then, essentially the same

arguments as in Case 4 apply. Q.E.D.

Theorem 4: Under Assumptions A1 and A3 to A16, for 1/2 < τ < 1, when s > 1/2 or
s+ 1/2 < τ , there exists a matrix Ṽ such that

√
n(α̂− α0)→d N(0, Ṽ ).

And, for the same η̂gi , η̂
h
i , and η̂

f
i in Theorem 2,

1

n

∑
i

η̂iη̂
′
i →p Ṽ

where η̂i ≡ ŴfŴgη̂
h
i + Ŵf (1− Ŵg)η̂

g
i + (1− Ŵf )η̂

f
i .

Proof of Theorem 4.
To ease referencing, recall (9):

√
n(α̂− α0) = ŴfŴg

√
n(α̂h − αh) + Ŵf

(
1− Ŵg

)√
n(α̂g − αg) + (1− Ŵf )

√
n(α̂f − αf )

+ ŴfŴg

√
n(αh − α0) + Ŵf

(
1− Ŵg

)√
n(αg − α0) + (1− Ŵf )

√
n(αf − α0).

Case 4). Suppose model G is correct (αg = α0), but H is locally misspecified with αh =
α0 + δhn

−s; then F is also locally misspecified with αf = α0 + δfn
−s. Rewrite (9) as

√
n(α̂− α0) = ŴfŴg

√
n(α̂h − αh) + Ŵf

(
1− Ŵg

)√
n(α̂g − α0) + (1− Ŵf )

√
n(α̂f − αf )

+ ŴfŴgδhn
1/2−s + (1− Ŵf )δfn

1/2−s. (19)

Analogously to the proof of Case 1) of Theorem 2, we can establish asymptotic normality of√
n(α̂g−α0). Also, following the same steps as in Case 2) of Theorem 2, we can obtain the influence

function of
√
n(α̂h − αh) as follows;

√
n(α̂h − αh) = [Âh − ωhn−sM̂∗h]−1Γ̂h, (20)

where Γ̂h ≡ ∇αĥ(θ̂h)Ω̂∗h
√
n{ĥ(θh)− ωhn−s}

+
√
n{∇αĥ(θh)−∇αh0(θh)}Ω̂∗hωhn−s +∇αh0(θh)

√
n(Ω̂∗h − Ω∗h)ωhn

−s.

10



By Assumption A12 and A13,
√
n{∇αĥ(θh) − ∇αh0(θh)} and

√
n(Ω̂h − Ωh) are bounded in

probability. Given Ω̂∗h →p Ω∗h, the last two terms in Γ̂h converge to zero because ωhn−s −→ 0 as
n −→∞ for s > 0. Therefore,

√
n(α̂h − αh) = Â−1

h ∇αĥ(θ̂h)Ω̂∗h
√
n{ĥ(θh)− ωhn−s}+ op(1).

By Assumption A7, A9, A10, A11, and the consistency of θ̂h for θ0,
√
n{ĥ(θh)−ωhn−s} →d N(0,Σh)

where Σh = V ar [H(Z, αh, γh)], ∇θĥ(θ
h
) →p ∇θh0(θh0 ), ∇θĥ(θ̂h) →p ∇θh0(θh0 ), and Ĥh →p Hh

which is non-singular by Assumption A8. Thus, by the continuous mapping theorem, we get

√
n(α̂h − αh)→d N(0, Ṽ h),

where Ṽ h is the same asymptotic variance as in Case 3) of Theorem 2 as if model H were correct.
Analogously, the same argument holds for

√
n(α̂f −αf ), so that we have

√
n(α̂f −αf )→d N(0, Ṽ f ).

Hence, all of
√
n(α̂g−α0),

√
n(α̂h−αh) and

√
n(α̂f −αf ) in the first line of (19) are asymptotically

normal with mean zero and variance being that of the corresponding GMM estimator under correct
specification.
Recall (19):

√
n(α̂− α0) = ŴfŴg

√
n(α̂h − αh) + Ŵf

(
1− Ŵg

)√
n(α̂g − α0) + (1− Ŵf )

√
n(α̂f − αf )

+ ŴfŴgδhn
1/2−s + (1− Ŵf )δfn

1/2−s.

Recalling (14) and its “squared version”, we have

nQ̂h = Op(n
2(1/2−s)) and nQ̂f = Op(n

2(1/2−s)) =⇒ nτ Q̂f = nτ−1nQ̂f = Op(n
τ−1+2(1/2−s)) = Op(n

τ−2s).

Consequently, for the last two terms in (19), we get

ŴfŴgδhn
1/2−s + (1− Ŵf )δfn

1/2−s =

(
1− 1

nτ Q̂f + 1

)(
nQ̂g · δhn1/2−s

nQ̂g + nQ̂h

)
+

(
1

nτ Q̂f + 1

)
δfn

1/2−s

=

(
1− 1

Op(nτ−2s) + 1

)(
Op(1)O(n1/2−s)

Op(1) +Op(n2(1/2−s))

)
+

(
1

Op(nτ−2s) + 1

)
O(n1/2−s). (21)

For the first term in the left-hand side in (21), if s = 1/2, its probability limit is zero because
Ŵf →p 0 and Ŵgn

1/2−s is bounded in probability. If s > 1/2, the probability limit is zero because
Ŵf →p 0 and Ŵgn

1/2−s →p 0. If s < 1/2, the probability limit is zero because Ŵf is bounded
between zero and one in probability and Ŵgn

1/2−s →p 0. Therefore, the first term in the left-hand
side in (21) disappears as n → ∞, regardless of s. However, the probability limit of the second
term (1− Ŵf )δfn

1/2−s in the left-hand side in (21) varies, depending on the relationship between s
and τ . So, the asymptotic behavior of

√
n(α̂− α0) depends on the values of s and τ as follows.

Case 4-1). If s = 1/2, Ŵf →p 0 and (1− Ŵf )δfn
1/2−s →p δf as n→∞. By Lemma 2, Ŵf →p 0

and ŴgŴf →p 0, boundedness of
√
n(α̂g − α0) and

√
n(α̂h − αh) in probability, the asymptotic

normality of
√
n(α̂f−αf ) and the continuous mapping theorem, only (1−Ŵf )

√
n(α̂f−αf ) survives

in (19) and we get √
n(α̂− α0)→d N(δf , Ṽ

f ).
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Case 4-2). If s > 1/2, Ŵf →p 0 and (1 − Ŵf )δfn
1/2−s →p 0 as n → ∞. Therefore, we get

ŴgŴf →p 0 by Lemma 2. Hence,

√
n(α̂− α0)→d N(0, Ṽ f ),

which is asymptotically equivalent to Case 1) of Theorem 2.
Case 4-3). If s < 1/2, the probability limit of the second term in (21) depends on s and τ :

(1− Ŵf )δfn
1/2−s =

(
1

Op(nτ−2s) + 1

)
O(n1/2−s) = Op(n

s+1/2−τ ).

When s + 1/2 < τ , (1− Ŵf )δfn
1/2−s disappears as n→∞, which implies that the second line

of (19) disappears. Due to s < 1/2,

s+ 1/2 < τ =⇒ 2s < 1/2 + s < τ =⇒ Ŵf →p 1 because of 2s < τ , and ŴgŴf →p 0

by Lemma 2. Therefore, by the boundedness of
√
n(α̂h − αh) and

√
n(α̂f − αf ) in probability, the

asymptotic normality of
√
n(α̂g − α0) and the continuous mapping theorem, we have

√
n(α̂− α0)→d N(0, Ṽ g),

which is asymptotically equivalent to Case 2) of Theorem 2.
When s+ 1/2 > τ , (1− Ŵf )δfn

1/2−s diverges as n→∞. Therefore,
√
n(α̂−α0) is not bounded

in probability.
When s+ 1/2 = τ , (1− Ŵf )δfn

1/2−s converges to a constant, say ν, times δf , as n→∞. Also,
we have

s+ 1/2 = τ =⇒ 2s < 1/2 + s = τ =⇒ Ŵf →p 1 because of 2s < τ , and ŴgŴf →p 0.

Therefore, by the boundedness of
√
n(α̂h − αh) and

√
n(α̂f − αf ) in probability, the asymptotic

normality of
√
n(α̂g − α0) and the continuous mapping theorem, we get

√
n(α̂− α0)→d N(νδf , Ṽ

g).

In sum, when G is correct but H is locally misspecified,
√
n(α̂ − α0) →d N(0, Ṽ f ) if s > 1/2, or√

n(α̂− α0)→d N(0, Ṽ g) if s+ 1/2 < τ .

Case 5). Suppose H is correct specified, but G is locally misspecified with αg = αg0 + δgn
−s.

Then essentially the same arguments as in Case 4) apply, replacing Ŵg with 1− Ŵg, and switching
the roles of β and γ and the roles of g and h. Q.E.D.

Appendix III: Derivation of Influence Functions η̂fi , η̂
g
i , and η̂hi

To find the influence functions η̂fi , recall the GMM estimator based on model F

θ̂f ≡ (α̂f , β̂f , γ̂
f ) = arg min

{α,β,γ}∈Θα×Θβ×Θγ
Q̃f (α, β, γ) = f̂(α, β, γ)Ω̂f f̂(α, β, γ).
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Under Assumption A7 and A9, the following first-order conditions hold:

FDf
α =

∂Q̃f (θ̂f )

∂α
= ∇αf̂(θ̂f )Ω̂f f̂(θ̂f ) = 0, FDf

β =
∂Q̃f (θ̂f )

∂β
= ∇β f̂(θ̂f )Ω̂f f̂(θ̂f ) = 0,

FDf
γ =

∂Q̃f (θ̂f )

∂γ
= ∇γ f̂(θ̂f )Ω̂f f̂(θ̂f ) = 0.

Expend f̂ around the unique minimizer θf ≡ {αf , βf , γf} to get

f̂(θ̂f ) = f̂(θf ) +∇α′ f̂(θ
f
)(α̂f − αf ) +∇β′ f̂(θ

f
)(β̂ − βf ) +∇γ′ f̂(θ

f
)(γ̂ − γf ),

where θ
f
is the mean value to apply the mean value theorem. Substitute these into each FDf to

get

FDf
α = ∇αf̂(θ̂f )Ω̂f{f̂(θf ) +∇α′ f̂(θ

f
)(α̂f − αf ) +∇β′ f̂(θ

f
)(β̂f − βf ) +∇γ′ f̂(θ

f
)(γ̂ − γf )},

FDf
β = ∇β f̂(θ̂f )Ω̂f{f̂(θf ) +∇α′ f̂(θ

f
)(α̂f − αf ) +∇β′ f̂(θ

f
)(β̂f − βf ) +∇γ′ f̂(θ

f
)(γ̂ − γf )}.

FDf
γ = ∇γ f̂(θ̂f )Ω̂f{f̂(θf ) +∇α′ f̂(θ

f
)(α̂f − αf ) +∇β′ f̂(θ

f
)(β̂f − βf ) +∇γ′ f̂(θ

f
)(γ̂ − γf )},

FDf = {FDf
α, FD

f
β , FD

f
γ} = Îf + Ĥf (θ̂f − θf ), and from these,

√
n(θ̂f − θf ) = Ĥf−1

√
nÎf ,

Îf ≡

 ∇αf̂(θ̂f )Ω̂f f̂(θf )

∇β f̂(θ̂f )Ω̂f f̂(θf )

∇γ f̂(θ̂f )Ω̂f f̂(θf )

 , Ĥf ≡

 ∇αf̂(θ̂f )Ω̂f∇α′ f̂(θ
f
) ∇αf̂(θ̂f )Ω̂f∇β′ f̂(θ

f
) ∇αf̂(θ̂f )Ω̂f∇γ′ f̂(θ

f
)

∇β f̂(θ̂f )Ω̂f∇α′ f̂(θ
f
) ∇β f̂(θ̂f )Ω̂f∇β′ f̂(θ

f
) ∇β f̂(θ̂f )Ω̂f∇γ′ f̂(θ

f
)

∇γ f̂(θ̂f )Ω̂f∇α′ f̂(θ
f
) ∇γ f̂(θ̂f )Ω̂f∇β′ f̂(θ

f
) ∇γ f̂(θ̂f )Ω̂f∇γ′ f̂(θ

f
)

 .
In this expression for

√
n(θ̂f−θf ), examine the part for

√
n(α̂f−αf ), i.e., the first k∗α×1 components:

√
n(α̂f − αf ) = Â−1

f ∇αf̂(θ̂f )Ω̂∗f
√
nf̂(θf ), where Âf ≡ ∇αf̂(θ̂f )Ω̂∗f∇α′ f̂(θ

f
), Ω̂∗f ≡ Ω̂

1/2
f Π̂f Ω̂

1/2
f ,

(22)

Π̂f ≡ Ik̃f − Ω̂
1/2
f ∇β f̂(θ

f
){∇β f̂(θ̂f )Ω̂f∇β′ f̂(θ

f
)}−1∇β f̂(θ̂f )Ω̂

1/2
f

− Ω̂
1/2
f ∇γ f̂(θ

f
){∇γ f̂(θ̂f )Ω̂f∇γ′ f̂(θ

f
)}−1∇γ f̂(θ̂f )Ω̂

1/2
f .

Then, we have

√
n(α̂f − αf ) =

1√
n

∑
i

η̂fi , η̂fi ≡ Â−1
f ∇αf̂(θ̂f )Ω̂∗fF (Zi, θ

f ), (23)

and η̂fi is the influence function of α̂f . If F is correct, θ
f is replaced by θf0 .

To find the influence functions η̂gi , recall the GMM estimator based on model G

θ̂g ≡ (α̂g, β̂g) = arg min
{α,β}∈Θα×Θβ

Q̃g(α, β) = ĝ(α, β)Ω̂gĝ(α, β).

Under Assumption A7 and A9, with probability approaching one, the following first-order conditions
hold:

FDg
α =

∂Q̃g(θ̂g)

∂α
= ∇αĝ(θ̂g)Ω̂gĝ(θ̂g) = 0, FDg

β =
∂Q̃g(θ̂g)

∂β
= ∇β ĝ(θ̂g)Ω̂gĝ(θ̂g) = 0.
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Expend ĝ around the unique minimizer θg ≡ {αg, βg} to get

ĝ(θ̂g) = ĝ(θg) + {∇α′ ĝ(θ
g
)}(α̂g − αg) + {∇β′ ĝ(θ

g
)}(β̂ − βg)

where θ
g
is the value for the mean value theorem. Substitute these into each FDg to get

FDg
α = ∇αĝ(θ̂g)Ω̂g[ĝ(θg) +∇α′ ĝ(θ

g
)(α̂g − αg) +∇β′ ĝ(θ

g
)(β̂g − βg)],

FDg
β = ∇β ĝ(θ̂g)Ω̂g[ĝ(θg) +∇α′ ĝ(θ

g
)(α̂g − αg) +∇β′ ĝ(θ

g
)(β̂g − βg)],

FDg = {FDg
α, FD

g
β} = Îg + Ĥg(θ̂g − θg), and from these,

√
n(θ̂g − θg) = Ĥg−1

√
nÎg,

Îg ≡
[∇αĝ(θ̂g)Ω̂gĝ(θg)

∇β ĝ(θ̂g)Ω̂gĝ(θg)

]
, Ĥg ≡

[
∇αĝ(θ̂g)Ω̂g∇α′ ĝ(θ

g
) ∇αĝ(θ̂g)Ω̂g∇β′ ĝ(θ

g
)

∇β ĝ(θ̂g)Ω̂g∇α′ ĝ(θ
g
) ∇β ĝ(θ̂g)Ω̂g∇β′ ĝ(θ

g
)

]
.

In this expression for
√
n(θ̂g−θg), examine the part for

√
n(α̂g−αg), i.e., the first k∗α×1 components:

√
n(α̂g − αg) = Â−1

g ∇αĝ(θ̂g)Ω̂∗g
√
nĝ(θg), where Âg ≡ ∇αĝ(θ̂g)Ω̂∗g∇αĝ(θ

g
), Ω̂∗g ≡ Ω̂1/2

g Π̂gΩ̂
1/2
g ,

(24)

Π̂g ≡ Ik̃g − Ω̂1/2
g ∇g′ ĝ(θ

g
){∇β ĝ(θ̂g)Ω̂g∇β′ ĝ(θ

g
)}−1∇β ĝ(θ̂g)Ω̂1/2

g .

Then, we have

√
n(α̂g − αg) =

1√
n

∑
i

η̂gi , η̂gi ≡ Â−1
g ∇αĝ(θ̂g)Ω̂∗gG(Zi, θ

g), (25)

and η̂gi is the influence function of α̂g. If G is correct, θg is replaced by θg0.
Analogously, we can obtain the influence function η̂hi switching the roles of β and γ, and switching

the roles of g and h. If H is correct, θh is replaced by θh0 .

Appendix IV: Two Examples of Applying the ODR Estimator

In this section, we provide two additional examples of applying our ODR estimator. For both
examples, DR estimators already exist, so we can comparing the requirements of our ODR estimator
to existing DR applications. The first example is average treatment effect estimation, while the
second concerns additive regression models.

Average Treatment Effect Estimation
Going back to the earliest DR estimators like Robins, Rotnitzky, and van der Laan (2000),

Scharfstein, Rotnitzky, and Robins (1999), and Robins, Rotnitzky, and Zhao (1994), here we de-
scribe the construction of DR estimates of average treatment effects, as in, e.g., Bang and Robins
(2005), Funk, Westreich, Wiesen, Stürmer, Brookhart, and Davidian (2011), Rose and van der Laan
(2014), Lunceford and Davidian (2004), Słoczyński and Wooldridge (2018) and Wooldridge (2007).
We then show how this model could alternatively be estimated using our ODR construction. Note
that other DR estimators of treatment effects also exist, e.g., Lee and Lee (2018).
The assumption in this application is that either the conditional mean of the outcome or the

propensity score of treatment is correctly parametrically specified. Let Z = {Y, T,X} where Y is

14



an outcome, T is a binary treatment indicator, and X is a J vector of other covariates (including
a constant). The average treatment effect we wish to estimate is

α = E{E(Y |T = 1, X)− E(Y |T = 0, X)}. (26)

As is well known, an alternative propensity score weighted expression for the same average
treatment effect is

α = E

{
Y T

E(T |X)
− Y (1− T )

1− E(T |X)

}
. (27)

Let G̃ (T,X, β) be the proposed functional form of the conditional mean of the outcome, for
some K vector of parameters β. So if G̃ is correctly specified, then G̃ (T,X, β) = E(Y |T,X).
Similarly, let H̃ (X, γ) be the proposed functional form of the propensity score for some J vector of
parameters γ, so if H̃ is correctly specified, then H̃ (X, γ) = E(T |X).
One standard estimator of α, based on equation (26), consists of first estimating β by least

squares, minimizing the sample average of E[{Y − G̃ (T,X, β)}2], and then estimating α as the
sample average of G̃ (1, X, β) − G̃ (0, X, β). This estimator is equivalent to GMM estimation of α
and β, using the vector of moments

E

[
{Y − G̃ (T,X, β)}r1 (T,X)

α− {G̃ (1, X, β)− G̃ (0, X, β)}

]
= 0 (28)

for some vector valued function r1 (T,X). Least squares estimation of β specifically chooses r1 (T,X)

to equal ∂G̃ (T,X, β) /∂β, but alternative functions could be used, corresponding to, e.g., weighted
least squares estimation, or to the score functions associated with a maximum likelihood based
estimator of β, given a parameterization for the error terms Y − G̃ (T,X, β). Note that to identify
the K vector β, the function r1 (T,X) needs to be a K̃ vector for some K̃ ≥ K. The problem
with this estimator is that in general α will not be consistently estimated if the functional form of
G̃ (T,X, β) is not the correct specification of E(Y |T,X).
An alternative common estimator of α, based on equation (27), consists of first estimating γ by

least squares, minimizing the sample average of E[{T − H̃ (X, γ)}2], and then estimating α as the
sample average of Y T

H̃(X,γ)
− Y (1−T )

1−H̃(X,γ)
. This estimator is equivalent to GMM estimation of α and γ,

using the vector of moments

E

[
{T − H̃ (X, γ)}r2 (X)

α−
{

Y T

H(X,γ)
− Y (1−T )

1−H(X,γ)

} ] = 0 (29)

for some J̃ vector valued function r2 (X). As above, least squares estimation of γ sets r2 (X) equal
to ∂H̃ (X, γ) /∂γ, but as above alternative functions could be chosen for r2 (X). To identify the
J vector γ, the function r2 (X) needs to be a J̃ vector for some J̃ ≥ J . With this estimator, in
general α will not be consistently estimated if the functional form of H̃ (X, γ) is not the correct
specification of E(T |X).
A doubly robust estimator like that of Bang and Robins (2005) and other authors assumes α

can be expressed as

α = E

{
Y T

H̃ (X, γ)
− Y (1− T )

1− H̃ (X, γ)
+
T − H̃ (X, γ)

H̃ (X, γ)
G̃ (1, X, β)− T − H̃ (X, γ)

1− H̃ (X, γ)
G̃ (0, X, β)

}
. (30)
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Observe that if H̃ (X, γ) = E(T |X), then the first two terms in the above expectation equal
equation (27) and the second two terms have mean zero. By rearranging terms, equation (30) can
be rewritten as

α = E

[
G̃ (1, X, β)− G̃ (0, X, β) +

T

H̃ (X, γ)
{Y − G̃ (1, X, β)} − 1− T

1− H̃ (X, γ)
{Y − G̃ (0, X, β)}

]
.

(31)
Rewriting the equation this way, it can be seen that if G̃ (T,X, β) = E(Y |T,X), then the

first two terms in equation (31) equal equation (26), and the second two terms have mean zero.
This shows that equation (30) or equivalently (31) is doubly robust, in that it equals the average
treatment effect α if either G̃ (T,X, β) or H̃ (X, γ) is correctly specified. The GMM estimator
associated with this doubly robust estimator estimates α, β, and γ, using the moments

E

 {Y − G̃ (T,X, β)}r1 (T,X)

{T − H̃ (X, γ)}r2 (X)

α−
{

Y T

H̃(X,γ)
− Y (1−T )

1−H̃(X,γ)
+ T−H̃(X,γ)

H̃(X,γ)
G̃ (1, X, β)− T−H̃(X,γ)

1−H̃(X,γ)
G̃ (0, X, β)

}
 = 0. (32)

Construction of this doubly robust estimator required finding equation (30) which is special to
the problem at hand and possesses the DR property. In general, finding such expressions for any
particular problem may be diffi cult or impossible.
In contrast, our proposed ODR estimator does not require any such creativity. All that is re-

quired for constructing our ODR for this problem is to know the two alternative standard estimators,
based on equations (26) and (27), expressed in GMM form, i.e., equation (28) and equation (29).
Just define G(Z, α, β) to be the vector of functions given in equation (28) and define H(Z, α, γ) to
be the vector of functions given in equation (29). That is,

G(Z, α, β) =

[
{Y − G̃ (T,X, β)}r1 (T,X)

α− {G̃ (1, X, β)− G̃ (0, X, β)}

]
(33)

and

H(Z, α, γ) =

[
{T − H̃ (X, γ)}r2 (X)

α−
{

Y T

H̃(X,γ)
− Y (1−T )

1−H̃(X,γ)

} ] . (34)

These functions can then be plugged into the expressions in section 2 to obtain our ODR
estimator, equation (1), without having to find an expression like equation (30) with its diffi cult to
satisfy properties.
The vector r2 (X) can include any functions of X as long as the corresponding moments

E{H(Z, α, γ)} exist. To satisfy the required overidentification (discussed earlier, and formally given
later in Assumption A3), we will want to choose r2 (X) to include J̃ elements where J̃ is strictly
greater than J . What we require is that, if the propensity score is incorrectly specified, then there is
no α, γ (in the set of permitted values) that satisfies the moments E{H(Z, α, γ)} = 0, while, if the
propensity score is correctly specified, then the only α, γ that satisfies E{H(Z, α, γ)} = 0 is α0, γ0.
By the same logic, we will want to choose the K̃ vector r1 (T,X) to include strictly more than K
elements. For effi ciency, it could be sensible to let r2 (X) and r1 (T,X) include ∂H̃ (X, γ) /∂γ and
∂G̃ (T,X, β) /∂β, respectively.

An Instrumental Variables Additive Regression Model

16



Okui, Small, Tan, and Robins (2012) propose a DR estimator for an instrumental variables (IV)
additive regression model. The model is the additive regression

Y = M(W,α) + G̃(X) + U, (35)

E(Q | X) = H̃(X),

E (U | X,Q) = 0, (36)

where Y is an observed outcome variable, W is a S vector of observed exogenous covariates, X
is a J vector of observed confounders, and Q is a K ≥ S vector of observed instruments. Note
that this model has features that are unusual for instrumental variables estimation, in particular,
the assumption that E (U | X,Q) = 0 is stronger than the usual E (U | Q) = 0 assumption. The
function M(W,α) is assumed to be correctly parameterized, and the goal is estimation of α.
Okui, Small, Tan, and Robins (2012) construct a DR estimator assuming that, in addition to

the above, either G̃(X) = G̃(X, β) is correctly parameterized, or that H̃(X) = H̃(X, γ) is correctly
parameterized. Let Z = {Y,W,X,Q}, and let r1(X) and r2(X) be vectors of functions chosen by
the user. Define G(α, β, Z) and H(α, γ, Z) by

G(Z, α, β) =

[
{Y −M(W,α)− G̃(X, β)}r1(X)

{Y −M(W,α)− G̃(X, β)}Q

]
(37)

and

H(Z, α, γ) =

[
{Q− H̃(X, γ)}r2(X)

{Y −M(W,α)}{Q− H̃(X, γ)}

]
. (38)

Okui, Small, Tan, and Robins (2012) take r1(X) = ∂G̃(X, β)/∂β and r2(X) = ∂H̃(X, γ)/∂γ. If
G̃(X, β) is correctly specified, then E{G(Z, α, β)} = 0, while if H̃(X, γ) is correctly specified then
E{H(Z, α, γ)} = 0.
To get their doubly robust estimator, Okui, Small, Tan, and Robins (2012) first specify G̃(Xi, β)

and H̃(Xi, γ), then estimate γ̂ by the moment:

E(Q|Xi) = H̃(Xi, γ)

and then estimate α and β by minimizing a quadratic form of B̂(α, β; γ̂), where

B̂(α, β; γ̂) =
1

n

n∑
i=1

[
{Yi −M(Wi, α)− G̃(Xi, β)}{Qi − H̃(Xi, γ̂)}

{Yi −M(Wi, α)− G̃(Xi, β)}r1(Xi)

]
.

In place of the Okui, Small, Tan, and Robins (2012) DR construction, we could estimate this
model using the ODR estimator, equation (1), with G and H given by equations (37) and (38).
To satisfy the required overidentification (Assumption A3), r1(X) and r2(X) need to include more
than J elements. So, e.g., we would want to include at least one more function of X into r1(X) and
r2(X), in addition to the functions ∂G̃(X, β)/∂β and ∂H̃(X, γ)/∂γ used by Okui, Small, Tan, and
Robins (2012).

Appendix V: Monte Carlo Tables for Local Misspecification
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Table 6-1. Model G is Correctly Specified and Model H is Misspecified (n = 500)
α1 Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

s=0.25
GMMg 0.0002 0.0006 0.0001 0.0075 0.0111 0.2310 3.1966 0.9465 0.0108 0.0011
GMMh 0.2374 0.2367 0.0566 0.2367 0.0157 0.1558 3.1392 0.0000 0.0139 0.0016
GMMf 0.1094 0.1094 0.0121 0.1094 0.0112 0.0817 3.0557 0.0000 0.0068 0.0005
ODRΛ1 0.0002 0.0006 0.0001 0.0075 0.0111 0.2311 3.1963 0.9460 0.0108 0.0011
s=0.5
GMMg 0.0002 0.0006 0.0001 0.0075 0.0110 0.1255 3.0813 0.9535 0.0108 0.0008
GMMh 0.0827 0.0822 0.0071 0.0822 0.0174 -0.0439 3.1104 0.0045 0.0175 0.0019
GMMf 0.0220 0.0223 0.0006 0.0223 0.0093 0.0825 3.0819 0.3365 0.0090 0.0006
ODRΛ1 0.0128 0.0058 0.0008 0.0102 0.0259 0.9210 3.2417 0.7455 0.0109 0.0019
s=0.75
GMMg -0.0001 0.0001 0.0001 0.0074 0.0108 0.0707 2.8505 0.9570 0.0108 0.0008
GMMh 0.0181 0.0180 0.0007 0.0194 0.0192 0.0233 2.9125 0.8355 0.0193 0.0021
GMMf 0.0044 0.0045 0.0001 0.0074 0.0095 0.0275 2.7750 0.9270 0.0094 0.0006
ODRΛ1 0.0058 0.0052 0.0002 0.0081 0.0123 0.0457 2.7501 0.8905 0.0099 0.0016
Global
GMMg -0.0001 0.0002 0.0001 0.0073 0.0108 0.1479 2.8751 0.9560 0.0108 0.0009
GMMh 0.1990 0.1986 0.0399 0.1986 0.0177 0.1549 3.0003 0.0000 0.0155 0.0018
GMMf 0.0729 0.0728 0.0054 0.0728 0.0109 0.1287 3.0088 0.0000 0.0077 0.0005
ODRΛ1 -0.0001 0.0002 0.0001 0.0073 0.0108 0.1480 2.8743 0.9560 0.0108 0.0009

Table 6-2. Model G is Correctly Specified and Model H is Misspecified (n = 500)
α0 Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

s=0.25
GMMg -0.0005 -0.0008 0.0022 0.0319 0.0467 0.0210 2.8965 0.9530 0.0459 0.0025
GMMh -0.2385 -0.2364 0.0598 0.2364 0.0544 -0.0138 2.8922 0.0030 0.0504 0.0033
GMMf -0.1108 -0.1099 0.0166 0.1099 0.0654 -0.0509 2.9047 0.2860 0.0369 0.0013
ODRΛ1 -0.0005 -0.0008 0.0022 0.0319 0.0467 0.0210 2.8964 0.9530 0.0459 0.0025
s=0.5
GMMg -0.0016 -0.0012 0.0022 0.0324 0.0467 -0.0374 2.9635 0.9515 0.0459 0.0019
GMMh -0.0838 -0.0827 0.0092 0.0827 0.0470 -0.0797 2.9642 0.5840 0.0465 0.0026
GMMf -0.0234 -0.0226 0.0028 0.0359 0.0473 -0.0714 2.9394 0.8995 0.0441 0.0017
ODRΛ1 -0.0141 -0.0131 0.0027 0.0346 0.0503 -0.1517 3.0821 0.9175 0.0455 0.0020
s=0.75
GMMg -0.0010 -0.0002 0.0021 0.0314 0.0458 -0.1404 2.9735 0.9565 0.0459 0.0018
GMMh -0.0193 -0.0186 0.0027 0.0350 0.0483 -0.1429 3.0438 0.9355 0.0482 0.0028
GMMf -0.0054 -0.0044 0.0021 0.0313 0.0456 -0.1263 2.9815 0.9540 0.0452 0.0017
ODRΛ1 -0.0069 -0.0055 0.0022 0.0314 0.0461 -0.1310 3.0076 0.9490 0.0453 0.0017
Global
GMMg -0.0010 -0.0003 0.0021 0.0314 0.0458 -0.1566 2.9735 0.9570 0.0459 0.0021
GMMh -0.2000 -0.2000 0.0428 0.2000 0.0529 0.0663 3.1573 0.0225 0.0495 0.0033
GMMf -0.0732 -0.0731 0.0084 0.0739 0.0554 0.0501 2.9813 0.5400 0.0402 0.0014
ODRΛ1 -0.0010 -0.0003 0.0021 0.0314 0.0458 -0.1563 2.9744 0.9570 0.0459 0.0021
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Table 7-1. Model G is Misspecified with s = 0.75 and Model H is Misspecified (n = 500)
α1 Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

s=0.25
GMMg 0.0088 0.0093 0.0002 0.0102 0.0104 0.1033 3.0590 0.8355 0.0102 0.0010
GMMh 0.2297 0.2292 0.0530 0.2292 0.0148 0.2036 2.9334 0.0000 0.0130 0.0015
GMMf 0.1112 0.1108 0.0125 0.1108 0.0108 -0.1158 3.3286 0.0000 0.0065 0.0004
ODRΛ1 0.0088 0.0093 0.0002 0.0102 0.0104 0.1064 3.0616 0.8355 0.0102 0.0010
s=0.5
GMMg 0.0086 0.0087 0.0002 0.0098 0.0109 0.1853 3.1186 0.8600 0.0105 0.0008
GMMh 0.0807 0.0805 0.0068 0.0805 0.0178 -0.0272 2.9853 0.0090 0.0171 0.0017
GMMf 0.0276 0.0277 0.0009 0.0277 0.0095 0.1450 3.2462 0.1590 0.0088 0.0006
ODRΛ1 0.0222 0.0155 0.0011 0.0161 0.0254 0.6447 2.7902 0.6020 0.0108 0.0021
s=0.75
GMMg 0.0090 0.0090 0.0002 0.0101 0.0105 0.0550 3.0231 0.8565 0.0106 0.0008
GMMh 0.0181 0.0185 0.0007 0.0198 0.0198 0.0769 2.8749 0.8185 0.0192 0.0022
GMMf 0.0113 0.0113 0.0002 0.0115 0.0092 0.0496 3.1639 0.7720 0.0092 0.0006
ODRΛ1 0.0125 0.0120 0.0003 0.0123 0.0115 0.0250 3.0848 0.7445 0.0098 0.0018
Global
GMMg 0.0089 0.0092 0.0002 0.0102 0.0106 0.1271 3.0891 0.8520 0.0103 0.0009
GMMh 0.1939 0.1926 0.0379 0.1926 0.0167 0.1383 3.1092 0.0000 0.0146 0.0017
GMMf 0.0768 0.0766 0.0060 0.0766 0.0101 0.0503 2.8409 0.0000 0.0075 0.0005
ODRΛ1 0.0089 0.0092 0.0002 0.0102 0.0106 0.1241 3.0766 0.8500 0.0103 0.0009

Table 7-2. Model G is Misspecified with s = 0.75 and Model H is Misspecified (n = 500)
α0 Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

s=0.25
GMMg -0.0083 -0.0071 0.0022 0.0315 0.0458 -0.1606 2.8672 0.9475 0.0445 0.0023
GMMh -0.2309 -0.2292 0.0560 0.2292 0.0524 -0.0060 3.0920 0.0030 0.0485 0.0032
GMMf -0.1115 -0.1098 0.0166 0.1098 0.0647 -0.0952 2.9328 0.2735 0.0363 0.0013
ODRΛ1 -0.0083 -0.0071 0.0022 0.0315 0.0458 -0.1605 2.8666 0.9475 0.0445 0.0023
s=0.5
GMMg -0.0090 -0.0087 0.0022 0.0317 0.0455 -0.0878 2.9419 0.9485 0.0453 0.0018
GMMh -0.0811 -0.0807 0.0087 0.0807 0.0457 -0.0785 2.9850 0.5940 0.0459 0.0024
GMMf -0.0281 -0.0278 0.0029 0.0369 0.0455 -0.0613 2.9619 0.8930 0.0437 0.0016
ODRΛ1 -0.0225 -0.0204 0.0030 0.0351 0.0497 -0.2171 3.1523 0.9000 0.0449 0.0019
s=0.75
GMMg -0.0100 -0.0091 0.0021 0.0321 0.0448 -0.0071 2.9514 0.9535 0.0455 0.0018
GMMh -0.0189 -0.0199 0.0027 0.0346 0.0481 -0.0238 2.9757 0.9310 0.0481 0.0029
GMMf -0.0122 -0.0122 0.0021 0.0318 0.0446 -0.0059 2.9843 0.9450 0.0449 0.0017
ODRΛ1 -0.0133 -0.0130 0.0022 0.0330 0.0453 0.0016 2.9476 0.9410 0.0450 0.0018
Global
GMMg -0.0106 -0.0117 0.0021 0.0319 0.0450 -0.0511 2.9491 0.9475 0.0448 0.0020
GMMh -0.1952 -0.1941 0.0407 0.1941 0.0513 0.1066 3.2575 0.0200 0.0479 0.0031
GMMf -0.0785 -0.0784 0.0092 0.0785 0.0549 -0.0661 2.9737 0.5035 0.0396 0.0014
ODRΛ1 -0.0106 -0.0118 0.0021 0.0319 0.0450 -0.0508 2.9492 0.9475 0.0448 0.0020
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